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Abstract

In recent years, there has been an increasing interest in the Operations community in

studying problems that balance the maximization of profits and efficiency with notions of

fairness (e.g., Bertsimas et al. 2011, 2012) and environmental sustainability (e.g., Kleindorfer

et al. 2005, Lee and Tang 2018). In this thesis, we present two works that contribute to this

growing literature. The first chapter, coauthored with Yonatan Gur and Dan Iancu, studies

the trade-offs between efficiency and guarantees to providers that may arise from equity

or fairness considerations. In the second chapter, coauthored with Dan Iancu and Erica

Plambeck, we investigate how increasing smallholder farmers’ welfare through intensification

can affect tropical forest conservation. We provide a more detailed description of each

chapter below.

Value Loss in Allocation Systems with Provider Guarantees. Many operational

settings share the following three features: (i) a centralized planning system allocates tasks

to workers or service providers, (ii) the providers generate value by completing the tasks,

and (iii) the completion of tasks influences the providers’ welfare. In such cases, the planning

system’s allocations often entail trade-offs between the service providers’ welfare and the

total value that is generated (or that accrues to the system itself), and concern arises that

allocations that are good under one metric may perform poorly under the other. In this

chapter we propose a broad framework for quantifying the magnitude of value losses when

allocations are restricted to satisfy certain desirable guarantees to the service providers.

We consider a general class of guarantees that includes many considerations of practical

interest arising, e.g., in the design of sustainable two-sided markets, in workforce welfare

and compensation, or in sourcing and payments in supply chains, among other application
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domains. We derive tight bounds on the relative value loss, and show that this loss is

limited for any restriction included in our general class. Our analysis shows that when

many providers are present, the largest losses are driven by fairness considerations, whereas

when few providers are present, they are driven by the heterogeneity in the providers’

effectiveness to generate value; when providers are perfectly homogenous, the losses never

exceed 50%. We study additional loss drivers and find that less variability in the value

of jobs and a more balanced supply-demand ratio may lead to larger losses. Lastly, we

demonstrate numerically using both real-world and synthetic data that the loss can be

small in several cases of practical interest.

Improving Smallholder Welfare While Preserving Natural Forest: Intensi-

fication vs Deforestation. Increasing the welfare of smallholder farmers in developing

countries plays a crucial role in the global effort to reduce worldwide poverty and hunger.

On the one hand, smallholders represent a large proportion of the world’s poor and, on

the other, they produce the majority of the food consumed in developing countries. This

realization has led governments and organizations around the world to implement policies

aimed at increasing farmers’ yields. Although most of these policies have resulted in welfare

increases, the environmental effects have been varied. While in many settings intensification

policies have been linked to a decrease in deforestation, in many other settings the reverse

is true. In this chapter we propose a novel explanation of these seemingly contradictory re-

sults. We achieve this through studying a detailed operational model of a farmer’s dynamic

decisions of land-clearing and production. We show the importance of considering the in-

teraction between random production costs and liquidity constraints faced by smallholder

farmers. These two elements are key to our main result: a reduction in the cost of intensi-

fication can lead to lower deforestation rates when the variation in production costs is high

enough compared to the cost of intensification. Alternatively, the same reduction in the

cost of intensification may lead to higher deforestation rates if the variation in production

costs is low enough compared to the cost of intensification. This result helps explain the

discrepancies seen in practices and may allow policy makers to better target interventions

in order to achieve win-win situations: improvement of smallholder welfare and protection

of the natural forest.
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Chapter 1

Value Loss in Allocation Systems

with Provider Guarantees

1.1 Introduction

In many operational settings, a centralized planning system (system henceforth) decides how

to allocate a pool of resources or tasks to an existing set of workers or service providers. Such

allocations routinely determine the total value created; but oftentimes, they also influence

how this value is shared between the system and the providers. When only some allocations

meet particular attributes that the providers find appealing, this could significantly impact

both the providers’ welfare as well as the system in the long-run, e.g., due to provider

retention.

This gives rise to a potentially difficult question: How should the system trade off the

appealing features of such allocations against the potential value loss associated with them?

Critically, how much of the total value created or of the system’s share of that value might

be lost by ensuring that allocations to providers meet such desirable attributes?

To understand this fundamental issue in a more concrete setting, consider online service

platforms such as Upwork, Grubhub, Uber, or Lyft. These platforms match customer ser-

vice requests for labor, food, or rides, with dedicated service providers (freelance workers

1
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or drivers), and typically rely on revenue-sharing agreements to split the revenue collected

between the providers and the platform. The allocation of service requests thus critically

influences the value generated upon each service completion as well as the portions of the

total value that are retained by different providers. This value may consist of both monetary

components (e.g., the revenue collected, or the profits when accounting for costs) as well as

non-monetary ones (e.g., the satisfaction of providers and the service quality experienced

by customers). Ceteris paribus, providers who are assigned fewer or “worse” requests could

end up with lower welfare, and as a consequence could potentially leave the platforms for

better prospects. Such retention issues have been well documented (e.g., CNBC 2017), and

platforms have begun to set up a variety of mitigating measures that range from guaranteed

income levels for providers (see, e.g., GrubHub 2019, Uber Technologies Inc. 2018b and Lyft

Inc. 2018) to designing loyalty and bonus payments tied to completing multiple service re-

quests (see, e.g., DoorDash 2019, Financial Times 2014, and Uber Technologies Inc. 2018a).

How much are platforms sacrificing in terms of revenues, profits, or customer experience

when their allocations are designed to carry such guarantees for the service providers?

To demonstrate the tradeoff in a different setting, consider a traditional brick-and-

mortar business that designs work schedules for its sales associates. Here too the allocation

can critically drive the value generated: assigning a top-performing sales associate to work

on busier days may increase sales and revenue for the store, and may also increase customer

satisfaction. But such allocations also have a direct impact on the employees, in both

monetary terms, e.g., due to commissions and bonuses tied to completed sales (Berger 1972),

as well as non-monetary terms, e.g., due to job satisfaction, work-life balance, and worker

health (Bacharach et al. 1991, Sparks et al. 2011). Work schedules and job assignments

thus routinely follow certain patterns intended to maintain a fair and balanced workload

for the employees. But do these entail a significant revenue or profit loss for the employer

or goodwill loss for the customers?

These examples highlight several settings in which only some of the system’s allocations

meet certain desirable attributes for the service providers. We henceforth refer to these
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as provider guarantees. Considering only allocations that ensure provider guarantees could

generate a loss in the total value or in the system’s share of the value that could be achieved

without such restrictions. Although such losses could in theory be mitigated in some cases by

designing suitable monetary transfers,1 the resulting mechanisms are rarely implementable

in practice due to numerous legal, ethical and computational challenges.2 We thus focus on

understanding the value loss associated with provider guarantees in settings where monetary

transfers are not possible; we seek to quantify the magnitude of this value loss, its key

drivers, and the structure of the guarantees that are most likely to cause large losses.

1.1.1 Main Contribution

On the modeling front, we develop a broad framework that allows quantifying the value that

may be lost due to imposing provider guarantees in various settings. We consider a central-

ized planning system that allocates a discrete set of jobs (or resources) to a set of providers

who are endowed with heterogeneous effectiveness to generate value by completing the jobs.

We capture an allocation design that institutes desirable provider guarantees by imposing

constraints (also referred to as restrictions) on the system’s feasible allocations, and we

only require the set of constrained allocations to satisfy a mild and natural monotonicity

condition. This allows us to capture a variety of practical considerations arising in the sus-

tainable design of two-sided markets, in workforce welfare and compensation mechanisms,

as well as in sourcing and payments in supply chains, among other application domains.

We define the relative value loss associated with instituting certain provider guarantees

as the fraction of the maximal value achievable by unrestricted allocations that is lost

when imposing the constraints associated with satisfying these guarantees. We derive tight

bounds on the relative value loss that hold for any restrictions in a general class of provider

1In particular, the system could choose any allocation that maximizes the total value, and then redis-
tribute this value through monetary transfers to ensure the provider guarantees are satisfied.

2For example, monetary transfers might lead to inequitable payment for identical jobs, which is linked to
perceptions of unfairness; see, e.g., Greenberg (1982) and Brockner and Wiesenfeld (1996). In addition, it is
unclear that monetary transfers can entirely mitigate non-monetary aspects of the allocation and provider
welfare.
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guarantees. We establish these by solving a fractional linear relaxation of the problem of

maximizing the relative value loss, and by producing instances that match the maximal

value of this relaxation.

Our bounds only depend on the heterogeneity in the providers’ effectiveness to generate

value, and on the number of providers. We find that although unbounded heterogeneity

may lead to unbounded relative loss, when heterogeneity is bounded, the loss must be

bounded as well under any of the guarantees that we consider. In particular, the relative loss

never exceeds 50% when providers are homogenous in their effectiveness to generate value,

irrespective of how many providers exist. This contrasts several findings in the resource

allocation literature that exhibit unbounded losses, particularly in regimes with a large

number of providers, and highlights the importance of explicitly capturing certain aspects

of the job allocation problem that are included in our model (see §1.1.2 for a more detailed

discussion). Qualitatively, our findings suggest that allocation systems concerned with large

losses due to instituting provider guarantees may consider reducing the heterogeneity in the

providers’ (endowed) effectiveness to generate value, as this can substantially reduce the

magnitude of such losses in the worst case.

Our analysis also highlights the most prominent settings and factors leading to value

loss. We show that when few providers exist, the key loss driver is the heterogeneity in the

providers’ effectiveness to generate value. The largest losses emerge when the allocation

system institutes guarantees that target precisely the providers with lower effectiveness to

generate value; in practice, this could occur, e.g., when guaranteeing a certain workload

level to new, inexperienced providers.

In contrast, we show that when many providers with bounded heterogeneity exist, the

primary loss driver is lost demand, i.e., unallocated jobs: the largest losses occur when the

system is unable to allocate many of the jobs due to a combination of physical constraints

(preventing jobs from being completed by the same provider) and fairness constraints related

to the guarantees instituted for the providers. More precisely, we find that the worst-case

losses emerge from Max-Min fairness considerations. Such fairness considerations are a strict
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subset of the guarantees that we consider; thus, our result provides additional context for

a recent literature stream focused on quantifying fairness-efficiency trade-offs in operations

(see §1.1.2 for a more detailed discussion), by showing that these may become particularly

pertinent in large-scale allocation systems with ample supply, ample demand and physical

constraints that prevent certain jobs from being assigned together.

We also study the impact of several other important drivers of the value loss. Building

on the observation that the structure of the set of feasible allocations can be critical, we

characterize several cases of practical interest where the loss is guaranteed to vanish. In

addition, we show that the integrality of allocations is critical: allowing for fractional allo-

cations would eliminate the loss for a broad class of provider guarantees. We further show

that the symmetry of the set of feasible allocations plays a prominent role: when providers

have different sets of jobs they can perform, the relative value loss may asymptotically ap-

proach 100% as the number of providers grows large. This is consistent with our finding

concerning the impact of heterogeneity in the providers’ effectiveness to generate value, and

it reinforces the idea that when providers are sufficiently “different” (either in their effec-

tiveness to generate value from jobs or in their capability to execute jobs in the first place),

this can critically drive the losses, making them unbounded in extreme cases3. Finally, we

demonstrate that the variability in the value of jobs and the imbalance in supply (number

of providers) and demand (number of jobs) significantly impact value losses, with a higher

variability in values or a more imbalanced supply-demand leading to reduced value losses.

Using both synthetic data and real-world data consisting of taxi trips in New York

City, we study numerically the relative value losses associated with implementing provider

guarantees. As this setting corresponds roughly to viewing providers (i.e., taxi drivers)

as approximately homogeneous in their effectiveness to generate value from jobs, we focus

on guarantees corresponding to fairness considerations. The numerical results confirm the

robustness of our theoretical findings concerning the impact of the variation in the intrinsic

3Nevertheless, we show numerically that the effect of asymmetric sets of feasible allocations is nuanced:
some asymmetry may actually reduce average losses, but complete asymmetry can lead to unbounded worst-
case losses.
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job value and the supply-demand imbalance on the relative value loss. Moreover, in the

instances generated from the real-world data, we document relative value losses that never

exceed 4%. This suggests that losses associated with implementing provider guarantees

in particular cases of practical interest may actually be even significantly lower than our

theoretical worst-case bounds – a finding that we believe motivates additional research

focused on more specific settings or on finding policies that can achieve such guarantees.

1.1.2 Related Literature

Relative Efficiency Losses due to Fairness. Our work is related to a stream of litera-

ture that studies efficiency losses emerging when outcomes are constrained to satisfy certain

fairness considerations. Bertsimas et al. (2011, 2012) consider continuous resource alloca-

tion problems where a centralized decision maker balances efficiency (i.e., social welfare)

with fairness and equity considerations. They define the price of fairness as the relative

loss in efficiency under such fairness considerations, and derive theoretical bounds on this

measure that depend on the number of agents and on the fairness criterion. As the number

of agents grows arbitrarily large, the worst-case losses always approach 100%, regardless of

the fairness criterion imposed, and the instances that get close to this loss involve asymme-

tries between the different agents. Our study retains the same definition of relative value

loss, but differs in several modeling primitives and results. Specifically, we focus on discrete

allocation problems where guarantees (such as fairness considerations) are modeled through

constraints on the feasible allocations rather than on the possible utility outcomes; we con-

sider a broader set of restrictions that includes the fairness criteria in Bertsimas et al. (2011,

2012) as special cases; and we explicitly model and study a specific form of heterogeneity,

in the providers’ effectiveness to generate value from the jobs they are assigned. In our

setting, unbounded heterogeneity is needed to obtain losses of 100%, and this can occur

with both a small and a large number of agents/providers, unlike in Bertsimas et al. (2011,

2012). More importantly, we find that when heterogeneity is bounded, the worst-case losses

are always bounded irrespective of the number of providers and of the guarantees used, and
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never exceed 50% when providers are homogenous. We elaborate more on the root causes

for this discrepancy in §1.4. Our finding that worst-case restrictions actually correspond to

Max-Min fairness considerations when the number of agents/providers is sufficiently large

also provides more context for the large stream of literature focused on quantifying fairness

and efficiency trade-offs in various large-scale operational settings (e.g., Bertsimas et al.

2013, McCoy and Lee 2014, Iancu and Trichakis 2014, Qi 2017).

Efficiency Losses in Equilibrium. Our paper is also related to a rich literature study-

ing the Price of Anarchy – a measure introduced by Papadimitriou (2001) and Roughgarden

and Tardos (2002) that quantifies the efficiency loss of Nash equilibrium outcomes relative

to an optimal centralized solution. It is known that the Price of Anarchy can be bounded in

certain settings (see, e.g., Roughgarden 2003, Johari and Tsitsiklis 2004, Correa et al. 2004,

Perakis and Roels 2007), but it can also be arbitrarily large (see, e.g., Awerbuch et al. 2006,

Chawla and Roughgarden 2008, Koutsoupias and Papadimitriou 2009). We study efficiency

losses generated by a centralized planner restricting the outcomes on purpose, rather than

losses due to strategic behavior of selfish agents.

Allocation of Indivisible Jobs. Several approximation algorithms have been pro-

posed to obtain envy-free and Max-Min fair allocations for indivisible goods (see, e.g., Lip-

ton et al. 2004, Golovin 2005, and Asadpour and Saberi 2010). This line of work is aimed

at determining the allocations themselves, whereas our paper is focused on quantifying the

losses associated with such allocations, and understanding their key drivers.

Efficiency of Contracts. Our work is also related to a body of literature studying

the efficiency losses that may arise in various principal-agent interactions, such as between

a firm’s shareholders, debtholders and managers (see, e.g., Jensen and Meckling 1976),

between firms and their sales associates (see, e.g., Farley 1964), between buyers and their

suppliers (see, e.g., Cachon and Lariviere 2005), etc. Several papers in this literature

also seek to quantify the associated efficiency losses; see, e.g., Besbes et al. 2017 for more

discussion and additional references. Our work is not concerned with agency considerations,

but instead focuses on quantifying the relative efficiency loss associated with restricting
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allocations to satisfy certain attributes that may be desirable to providers.

1.2 Problem Formulation

For the sake of clarity, we first provide a basic description of our setup, and then discuss

some concrete examples in §1.2.1. A discussion of the modeling assumptions is deferred to

§1.2.2.

Consider a centralized planning system that allocates a given set of jobs D to a set

of n service providers denoted by N = {1, . . . , n}. Each job possesses a certain intrinsic

value, which we capture through a function v : D → R, so that v(d) denotes the intrinsic

value for job d ∈ D. For any subset of jobs S ⊆ D we denote by v(S)
def
=
∑

d∈S v(d)

the total value of all the jobs in S. Not all allocations of jobs to providers are possible,

and we let F denote the set of feasible allocations of jobs in D. If A = (A1, . . . , An) ∈ F

denotes a feasible allocation, then Ai denotes the jobs allocated to provider i ∈ N , and

A−i
def
= (A1, . . . , Ai−1, Ai+1, . . . , An) denotes the allocation to all other providers.

When provider i is assigned a set of jobs Ai ⊆ D, the value that is generated is γi v(Ai).

The parameter γi is pre-determined and fixed, and belongs to an interval [γmin, γmax], where

0 < γmin ≤ γmax
4. We let γ ∈ [γmin, γmax]n denote the heterogeneity profile of providers,

and we denote the degree of heterogeneity by

δ :=
γmax − γmin

γmax
.

System considerations and value loss. In deciding the allocations, the system seeks

to generate as much value as possible. Given all the feasible allocations F, the allocation

that would maximize the total value generated would be given by the optimal solution to

4The same framework and analysis goes through when considering a stochastic heterogeneity parameter
γi with support [γmin, γmax] and a known distribution, if we measure relative losses in the expected total
value.
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the problem

max
A∈F

n∑
i=1

γiv(Ai).

In order to guarantee certain conditions to its service providers, the system would also

be interested in restricting attention to a subset of allocations with guarantees FG ⊆ F.

This could reduce the total value generated, and we define the value loss under provider

guarantees Lγ(F,FG) as the relative loss in total value when the system considers only

allocations from FG:

Lγ(F,FG) =

max
A∈F

n∑
i=1

γiv(Ai)− max
B∈FG

n∑
i=1

γiv(Bi)

max
A∈F

n∑
i=1

γiv(Ai)

. (1.1)

Throughout the paper, we restrict attention to cases where FG is non-empty. Our goal

is to understand the magnitude and the key drivers of this value loss. The general model

setup allows capturing many practical settings of interest, as we discuss next.

1.2.1 Examples

We next illustrate the interpretation of various model components using a series of practical

examples.

Service platforms. Service platforms such as Upwork, Grubhub, Uber, and Lyft

can be thought of as systems that allocate demand for services (i.e., labor, food delivery,

trips) to providers (i.e., freelance workers, drivers). The jobs are indivisible, and each job

has a certain intrinsic value v(d), with several possible interpretations. For instance, v(d)

may correspond to the revenue from completing job d (given by the amount paid by the

customer), in which case the heterogeneity parameter γi can capture different notions of

generated value, including the following examples.

(i) Total revenue. Taking γi = 1 for all i, the objective
∑n

i=1 γiv(Ai) captures the total

revenue from the completed jobs, a measure of economic efficiency in the absence of costs.
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(ii) Revenue sharing. It is customary for service platforms such as Upwork, Grubhub,

Uber, or Lyft to retain a fraction of the revenue generated from the provided services. In

this case, if γi represents the share of the revenue accruing to the platform when dealing with

provider i, then
∑n

i=1 γiv(Ai) would represent the total revenue collected by the platform.

(iii) Costs/profits. The spatial and temporal length of a job are typically key drivers

for both the revenues as well as the costs from completing the job. Thus, γiv(d) could

capture the gross profit when driver i completes the job, equal to the revenue v(d) net

of provision costs (1 − γi)v(d). This allows modeling heterogeneity in the transportation

costs, for example, due to the different fuel economy of cars. The total value generated∑n
i=1 γiv(Ai) would denote the total net profit from jobs, a measure of economic efficiency

in the presence of costs.

In addition to these measures, if v(d) denotes the spatial or temporal length of a job

d, then γiv(d) could also capture the quality of service experienced by the customer(s)

when provider i completes the job. Under this interpretation, γi may capture idiosyncratic

differences due to, for example, car cleanliness or driver friendliness. The total generated

value would then correspond to the total quality of service experienced by customers from

the allocations.

The set of feasible allocations F captures constraints on allocating jobs to providers; for

instance, that each trip can be allocated to at most one provider, and that two trips that

overlap in time cannot be allocated together to the same driver. The allocations with guar-

antees FG ⊆ F can capture, for example, a platform’s commitments for minimal providers’

income (see, e.g., Uber Technologies Inc. 2018b). In this setting, the value loss could thus be

driven by two key factors: the providers’ heterogeneous effectiveness to generate (monetary

or non-monetary) value from the jobs they are allocated, and the potential demand loss due

to the inability to allocate all jobs.

Workforce Management. A closely related example occurs when managing a work-

force such as a team of sales associates. In this case, the system could be a regional or store

manager who designs schedules for n sales associates. These schedules could be temporal
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(e.g., which hours or days to work), spatial (e.g., which floors or departments to cover) or

could consist of the assignments of particular clients. With v(d) denoting the (expected)

revenue from a particular sales opportunity d, γiv(d) can capture the revenue generated

when this opportunity is assigned to associate i (with γi measuring the associate’s effec-

tiveness/performance), or it could capture the fraction of the revenue accruing to the firm

(with 1 − γi denoting associate i’s commission). As in the service platform example, the

total value could also capture the quality of service experienced by clients or the gross profit

when the associates incur variable costs; the set of feasible allocations F could capture con-

straints on the schedules or assignments; and the subset of allocations FG ⊆ F could capture

guarantees in terms of income, bonuses or even spare time (all of which are known to be

relevant to effective workforce management, see, e.g., Tremblay et al. 2000, Cohen-Charash

and Spector 2001).

Sourcing from a Heterogeneous Supply Base. A different example arises when

the system represents a firm that decides how to allocate pre-scheduled indivisible orders

for inputs among its n suppliers. Here, v(d) can capture the volume of a particular order d,

and the coefficients γi may capture supply yields (when suppliers are heterogeneous in their

reliability, effectiveness, or quality) or gross margins for the firm (when different prices

are paid to different suppliers). The set of allocations FG ⊆ F may capture guarantees

for income or workload that could arise from a variety of considerations, such as a long-

term sourcing strategy that requires keeping multiple qualified suppliers, implementing dual

sourcing policies (Yu et al. 2009, Yang et al. 2012), or particular social or environmental

responsibility commitments (Patagonia 2018, Starbucks Corporation 2018).
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v(d) γi
∑n
i=1 γiv(Ai) F FG

Service
Platforms

Revenue
from job d

Revenue
generated by
provider i

Total revenue

Platform’s
share of
revenue
generated by
provider i

Total revenue
accrued by
platform

Gross profit
generated by
provider i

Total net profit

Constraints in
allocating jobs
(e.g., each trip
can be allocated
to at most one
provider)

Platform’s
commitments to
the providers
(e.g., minimum
income)

Length of
job d

Quality of
service offered
by provider i

Total quality of
service
experienced by
customers

Workforce
Management

Expected
revenue
from job d

Associate i’s
effective-
ness/performance

Total expected
revenue

Constraints on
the schedules or
assignments

Guarantees in
terms of
income, bonuses
or spare time

Sourcing from
Heterogeneous
Suppliers

Volume of
order d

Supply yields
or gross
margins for
the firm

Total value
generated by the
suppliers

Intrinsic
constraints in
the allocation of
orders to
suppliers

Dual-sourcing
policies, social
or
environmental
responsibility
commitments

Table 1.1: Interpretation of parameters. For each example in §1.2.1 we present a summary of
the interpretation of each parameter.

1.2.2 Assumptions

The allocation problem we described so far is very general, but is also intractable in the

absence of additional structure. To that end, we next introduce some mild assumptions

that still permit a lot of generality in the allowable primitives of our model, and yet ren-

der tractability in settings of practical interest. The first assumption concerns jobs and

feasible allocations, and the second concerns the provider guarantees that can be under

consideration. Throughout, we use P(D) to denote the collection of all subsets of D.

Assumption 1.1 The set of feasible allocations F satisfies the following properties:

i) (Indivisibility) In any feasible allocation, each job is assigned to at most one provider,
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i.e.,

F ⊆ {A = (A1, . . . , An) ∈ P(D)n | Ai ∩Aj = ∅ for all i, j ∈ N, i 6= j} .

ii) (Symmetry) If A is a feasible allocation, then any permutation of A is a feasible

allocation.

iii) (Monotonicity) If (Ai, A−i) is feasible, then (B,A−i) is feasible, for any B ⊆ Ai and

any i ∈ N .

iv) (Provider Independence) If (Ai, A−i), (Bi, B−i) ∈ F are such that Ai ∩ Bj = ∅ for all

j 6= i, then (B1, . . . , Bi−1, Ai, Bi+1, . . . , Bn) ∈ F.

Part (i) of Assumption 1.1 requires that jobs are indivisible, so that feasible allocations

can assign each job to at most one provider. This is reasonable in various settings, including

(a) service platforms such as Upwork, Grubhub, Uber, or Lyft, where unique jobs must be

allocated to service providers operating independently; (b) sales settings where a single lead

cannot be divided across multiple associates; and (c) sourcing settings where a single unit

cannot be divided among suppliers.

Part (ii) of the assumption implicitly requires providers to be homogeneous in their

ability to perform jobs: if a set of jobs can be fulfilled by one provider, it can be fulfilled

by any other provider as well. This is reasonable when the jobs do not require essential

skills or technology that is available only to a subset of suppliers or service providers. Thus,

it would not hold in settings in which providers’ specialization plays a prominent role in

their ability to complete jobs. Nevertheless, it is important to note that this requirement

only pertains to feasibility, i.e., it does not imply that different providers generate the same

value when completing a particular job. For instance, different Upwork providers may all

be able to complete a particular task, but the value that is generated (e.g., the profit or the

quality of service experienced by the customer) may differ, which could be captured by the

coefficients {γi}ni=1.

Part (iii) states that it is always possible to allocate fewer jobs. This always holds
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when jobs can be carried out independently from one another. In addition, the requirement

allows certain dependencies between jobs: for instance, if a set of jobs must be completed

together, i.e., by a single provider, these could be grouped into a single aggregate job that

should be allocated as an indivisible object in our setup.

Finally, part (iv) states that feasible allocations can be obtained by concatenating fea-

sible allocations for subsets of providers, as long as no job is assigned more than once.

This is essentially a requirement of independence on the providers: as long as jobs are

not duplicated, whether a provider can fulfill a set of jobs is independent of what jobs the

other providers are fulfilling. This is reasonable in many settings where having one provider

complete certain jobs carries essentially no externalities on other providers.

Our last assumption provides a connection between the set of allocations with guarantees

FG and the value of jobs v.

Assumption 1.2 (Pareto-efficient Provider Guarantees) If B ∈ FG and A ∈ F are

such that v(Ai) ≥ v(Bi) for all i ∈ N , then A ∈ FG.

This assumption bears an immediate interpretation as a requirement of Pareto efficiency:

it asks that any provider guarantee (as captured by FG) should allow for more value to

be generated whenever that is possible; if an allocation satisfies the provider guarantees,

then feasible allocations where every provider can generate more value should also satisfy

these guarantees. Seen in this light, the assumption comes across as a natural axiomatic

requirement that should be satisfied by any valid guarantees that the system might offer its

providers.

In a different sense, if the set FG captures allocations that are “acceptable” to the

providers (e.g., as they carry desirable guarantees), then Assumption 1.2 can also be inter-

preted as a condition on the providers’ preferences: namely, that assigning higher value jobs

to all providers should not be “less acceptable.” This suggests that the provider preferences

encoded in the set of guarantees should be aligned with the value function v. The following

result, which is an equivalent characterization of Assumption 1.2, formalizes this intuition.
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Proposition 1.1 (FG Aligned with v) A subset FG ⊆ F satisfies Assumption 1.2 if and

only if FG satisfies:

FG = arg max
A∈F

g(A),

for some g : F → R that satisfies g(B) ≥ g(A) for any A,B ∈ F with v(Bi) ≥ v(Ai) for

all i ∈ N .

A proof can be found in Appendix A.1. The result establishes that all valid provider

guarantees correspond to value-maximizing allocations when jobs are evaluated according

to some function g that preserves the same ordering as the value function v. Insofar as

allocations with guarantees FG capture provider preferences, this also means that Assump-

tion 1.2 exactly requires such preferences to be “aligned” with v. As we demonstrate in

the next subsection, such alignments between captured value and provider guarantees (and

preferences) can arise naturally in many practical settings.

1.2.3 Discussion and Classes of Provider Guarantees

Income Guarantees under Monotonic Payment Functions

An important class of provider guarantees satisfying Assumption 1.2 arises from ensuring

a minimum level of total income to each provider, when every provider’s compensation

is increasing in the value captured by job completions. More precisely, suppose that a

provider who completes a set of jobs S ⊆ D is compensated with an amount p(S), where

p : P(D)→ R denotes a payment function. For a given real number τ , we define the set

FG(p, τ,N) := {A ∈ F | p(Ai) ≥ τ, ∀ i ∈ N}, (1.2)

that includes the allocations that ensure that each provider is compensated with at least

an amount τ . The set FG(p, τ,N) satisfies Assumption 1.2 if p satisfies the property:

v(S) ≥ v(T ) ⇒ p(S) ≥ p(T ), ∀S, T ∈ P(D). (1.3)
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The latter is a natural requirement for payment or compensation functions: it asks

that a set of jobs carrying more intrinsic value should also command a (weakly) higher

compensation when completed. An important family of payment functions that satisfy

this property are proportional compensation functions of the form p(S) = βv(S) for some

β ∈ [0, 1]. Such proportional payments are widely used in practical revenue-sharing systems

(including Upwork, Grubhub, Uber, and Lyft, among many others) where service providers

retain a constant fraction of the payment made by the consumer once the job is completed.

Proportional payments also include commission-based payment mechanisms that are used

to compensate sales agents (see, e.g., Farley 1964, Eisenhardt 1988), as well as common

bonus schemes used to incentivize employees (see, e.g., Gibbons 1998, Lazear 2000).

The class of minimal income guarantees could also be generalized by considering provider-

specific payments and guarantees, i.e., by taking pi or τi or by considering guarantees only

for a subset N̂ ⊆ N of the providers. A visual depiction of several such guarantees is shown

in Figure 1.1, for the revenue-sharing case with p(S) = βv(S) for β = 1. The figure shows

both uniform income guarantees (with a unique τ for all providers), as well as non-uniform

ones (with different τi for each provider). A special case of uniform income guarantees is

obtained when τ is the largest value that ensures FG is nonempty; this corresponds to Max-

Min fair allocations (see Kalai and Smorodinsky 1975 and Mas-Colell et al. 1995), which

we discuss briefly in §1.2.3.

Unions and Intersections of Guarantees

Consider any collection of sets {FkG}k∈K where each set FkG satisfies Assumption 1.2. Then,

∩k∈KFkG and ∪k∈KFkG also satisfy Assumption 1.2. Considering intersections is useful for

modeling restrictions that certain targeted providers find desirable or acceptable. Namely,

building on the intuition developed in Proposition 1.1, suppose each provider i ∈ N is
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Figure 1.1: Examples of provider guarantees. Income guarantees FG(p, τ,N) for two providers
(n = 2) compensated according to revenue-sharing agreements with p(S) = βv(S) for β = 1. Each
circle denotes a feasible allocation, with the two axes corresponding to the intrinsic values v(A1) and
v(A2) for each provider. The circles in the shaded area show the revenues achievable by allocations in
each FG. (left) A uniform income guarantee with τ = 3; (center) A non-uniform income guarantee
with τ1 = 2, τ2 = 5; (right) The union of two non-uniform income guarantees with (τ1, τ2) = (2, 5)
and (τ1, τ2) = (4, 2), respectively.

endowed with a utility function ui satisfying the co-monotonicity requirements in Proposi-

tion 1.1.5 In addition, let

FiG := arg max
A∈F

ui(A),

be the allocations that maximize the provider’s utility. Then, the system could consider

FG = ∩i∈N̂F
i
G as the allocations with guarantees. Alternatively, we could also consider a

“satisficing” model (see Simon 1956) where FiG := {A ∈ F : ui(A) ≥ τi} are the allocations

that provider i finds “acceptable,” i.e., exceeding a minimum utility threshold, and the

system considers only allocations in ∩i∈N̂F
i
G that all providers find acceptable.

Unions of allocation sets may capture scenarios in which the system is choosing among

several possible restrictions. One such example is depicted in the right panel in Figure 1.1.

In fact, the following equivalent characterization of Assumption 1.2 shows that any provider

guarantee satisfying it can actually be written as the union of income guarantees under

monotonic payment functions.

Proposition 1.2 The set of allocations with guarantees FG satisfies Assumption 1.2 if and

5In particular, u(B) ≥ u(A) for any A,B ∈ F with v(Bi) ≥ v(Ai), ∀ i ∈ N .
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only if it can be expressed as the union of income guarantees under monotonic payment

functions. That is, FG ⊆ F satisfies Assumption 1.2 if and only if there exist monotonic

payment functions and income guarantees {(pk, τk)}k∈K for some index set K such that

FG = ∪k∈K FG(pk, τk, N).

Proposition 1.2 implies that the class of income guarantees under monotonic payment

functions is in some sense a universal generating family for all the restrictions that satisfy

Assumption 1.2, as any such restriction can be captured by considering several alternatives

from the former generating family. Although this characterization is not directly used in

the proof of the following results, it adds to the understanding of the class of guarantees

that satisfy Assumption 1.2. A proof of Proposition 1.2 can be found in Appendix A.1.

Fairness

Assumption 1.2 is also satisfied by considerations related to fairness/equity in how the

jobs are allocated to providers – a common issue in settings of social justice and workforce

compensation (see, e.g., Tremblay et al. (2000) and Cohen-Charash and Spector (2001)).

An important example arises from the broad class of α-fairness notions, first introduced by

Atkinson (1970). An allocation is said to be α-fair if it maximizes the constant elasticity

social welfare function:

Wα(A) =


n∑
i=1

v(Ai)
1−α

1− α
for α ≥ 0, α 6= 1

n∑
i=1

log(v(Ai)) for α = 1.

Because this welfare function is increasing in each component Ai, the associated restric-

tion FG = arg maxA∈FWα(A) satisfies Assumption 1.2 (this is an immediate corollary of

Proposition 1.1). The constant elasticity social welfare function is concave and component-

wise increasing, and thus it exhibits diminishing marginal welfare increase as the values

generated increase. In other words, if v(Ai) < v(Aj), for providers i and j, then a marginal

increase in v(Ai) would lead to a larger welfare increase than a marginal increase in v(Aj).
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Additionally, the rate at which marginal increases diminish is governed by the parameter

α; at higher α, there are higher incentives to increase the value allocated to providers that

are worse off, which makes solutions “more fair.” This motivates the name of α as the

inequality aversion parameter ; in fact, maximizing Wα(A) for α = 0 recovers an efficient

solution, while α →∞ recovers Max-Min fair solutions (see Kalai and Smorodinsky 1975,

Mas-Colell et al. 1995).

Max-min fair allocations are inspired by the notion of Rawlsian justice (Rawls 1971),

and result from uniform income guarantees under monotonic payment functions, when the

guarantee τ is the largest possible value for which the restriction set FG is non-empty. More

formally, we define the Max-Min fair restriction under monotonic payments as

FmM
G (p,N) := FG(p, τmax, N), where τmax := max{τ | FG(p, τ,N) 6= ∅}. (1.4)

1.3 Bounding the Value Loss under Provider Guarantees

Our first result provides an upper bound on the relative value loss Lγ(F,FG) that holds for

any feasible allocations and restrictions satisfying our assumptions.

Theorem 1.1 (Upper bound on the value loss) The value loss under provider guar-

antees is bounded above as follows:

sup
F,FG,γ

Lγ(F,FG) ≤ max

{
δ,

n− 1

n+ (1− δ)(n− 1)

}
, (1.5)

where the supremum is taken with respect to all γ ∈ [γmin, γmax]n and all sets F, FG satis-

fying Assumptions 1.1 and 1.2.

Theorem 1.1 provides a bound on the relative value loss that depends on the number

of providers n and the heterogeneity level δ. Note that the bound is fully characterized
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by these two parameters; Figure 1.2 depicts the parametric regions where n−1
n+(1−δ)(n−1)

exceeds δ (shaded area), which occurs when many providers are present (n is large) and the

heterogeneity level δ is not too high. Otherwise, when the heterogeneity δ is high and/or

there are only a few providers, the bound on the loss is driven solely by the heterogeneity,

and equals δ.

20 40 60 80
0.0

0.2

0.4

0.6

0.8

δ

n

Asymmetric worst case

Symmetric worst case

Figure 1.2: Different types of worst cases in different parametric regions. Shaded area
denotes values of (n, δ) such that δ ≤ n−1

n+(1−δ)(n−1) . In the non-shaded area, the worst-case instance

corresponds to asymmetric guarantees (see Instance 1.1), where all jobs are guaranteed to only one
provider, while in the shaded area the worst-case instance corresponds to a symmetric guarantee
(see Instances 1.2 and 1.3), where FG corresponds to a Max-Min fairness guarantee.

The dependency of the bound on n and δ is depicted in Figure 1.3. It can be seen

from (1.5) that for any fixed heterogeneity level δ, the maximum value loss is always strictly

smaller than 1
2−δ . This implies that as long as the heterogeneity is bounded, a system im-

plementing any of the discussed provider guarantees can only incur a limited value loss; and

this loss never exceeds 1
2 when providers are perfectly homogeneous (δ = 0). Importantly,

and as emphasized in §1.1.2, this result distinguishes our findings from many studies that

document unbounded losses in contexts of price of fairness (Bertsimas et al. 2011) or price
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Figure 1.3: Worst-case loss as a function of the number of providers and the hetero-

geneity level. Plot of max
{
δ, n−1
n+(1−δ)(n−1)

}
as a function of n for different values of δ.

of anarchy (Koutsoupias and Papadimitriou 2009).

Main ideas in the proof. We defer the complete proof of Theorem 1.1 to Ap-

pendix A.1, but we briefly describe its main ideas here. First, we propose an LP relaxation

of the problem of maximizing Lγ(F,FG) over all sets F and FG, for a fixed vector γ. For

this purpose, we provide a family of inequalities that connect the maximum value over the

set of feasible allocations F and over the set of allocations with guarantees FG. By exploit-

ing the quasi-convexity of the optimal value of this relaxation as a function of γ, we can

then maximize the loss by only considering extreme heterogeneity profiles γ ∈ [γmin, γmax]n.

Finally, we solve the LP relaxation for these values of γ to obtain the desired upper bound.

The next result shows that the upper bound in Theorem 1.1 is in fact tight, by charac-

terizing instances and provider guarantees that achieve the worst-case loss.

Theorem 1.2 (Attainable value loss) The bound on value loss in Theorem 1.1 is tight.

In particular, for every δ, n and ε > 0, there exist F1,FG
1,γ1 and F2,FG

2,γ2 satisfying
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Assumptions 1.1-1.2 so that

Lγ1(F1,F1
G) = δ (1.6)

Lγ2(F2,F2
G) =

n− 1

n+ (1− δ)(n− 1)
− ε. (1.7)

Theorem 1.2 states that the worst-case relative losses characterized in Theorem 1.1 are

tight. To prove this result, we exhibit three classes of instances, where the first one achieves

the loss in (1.6) and the other two asymptotically achieve the loss in (1.7). To provide more

intuition, we describe these instances for the case with n = 2 here, and defer the general

case to Appendix A.1.

Instance 1.1 (High guarantees with high provider heterogeneity) Consider n = 2

providers with γ1 = γmax and γ2 = γmin, a set of jobs D with v(D) > 0, a set of allocations

with guarantees FG = {(∅, D)}, and any feasible set F with FG ⊂ F. Then, Lγ(F,FG) =

γmax−γmin
γmax

= δ.

In Instance 1.1, the system has a set of jobs D to assign to two providers, and it is

possible to assign all the jobs to a single provider.6 The first provider generates more value

for the system (γ1 ≥ γ2), so the value-maximizing allocation would be (D, ∅), assigning all

jobs to that provider. However, the only allocation with guarantees is (∅, D), requiring all

jobs to be assigned to the second provider, and thus generating a loss due to heterogeneity.

This results in worst-case losses when heterogeneity is high and the number of providers is

not too large, as depicted in Figure 1.2.

The high losses in Instance 1.1 are enabled by the joint presence of two key features:

a high degree of heterogeneity in the providers’ effectiveness to generate value (with one

provider maximally effective, and another minimally effective), and asymmetric guarantees

that allocate all the jobs to the least effective provider. This asymmetry is critical: if the

guarantees had been “symmetrized,” e.g., by considering the union of all permutations of

6Note that by symmetry, since (∅, D) ∈ F, we must also have (D, ∅) ∈ F, so this allocation is also
feasible.
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which provider receives the full set of jobs, then the loss would vanish. So for heterogeneity

to be a critical driving force, it must be accompanied by asymmetric guarantees that are

misaligned in order to force jobs being assigned to less effective providers. The inefficiency

in Instance 1.1 can thus play a particularly prominent role in service platforms that may

favor new providers by guaranteeing them a higher workload, when such providers also have

less experience and thus generate less value, for example, in terms of productivity as well

as goodwill gain and customer satisfaction.7

The following instance achieves the bound on the relative loss that is given in (1.7).

Instance 1.2 (Max-Min fairness with monotonic payments) Consider n = 2 providers

with γ1 = γmax ≥ γ2 = γmin, and a set of jobs D = {d1, d2, d3} with v(d1) = v(d2) = 1 and

v(d3) = 1−κ for some κ > 0. The feasible allocations F are depicted in Figure 1.4: jobs can

be assigned together only if the corresponding segments are non-overlapping. The allocations

with guarantees are given by all Max-Min fair allocations FmM
G (p,N) under any strict mono-

tonic payment function p, as described in (1.4). Then, the value-maximizing allocation is(
{d1, d2}, {d3}

)
, the value-maximizing allocation with guarantees is

(
{d1}, {d2}

)
,8 and the

relative value loss is:

Lγ(F,FG) =
(2γmax + (1− κ)γmin)− (γmax + γmin)

2γmax + (1− κ)γmin
.

In particular, for any ε > 0 there exists a κ > 0 such that Lγ(F,FG) = 1
3−δ − ε, and thus

Lγ(F,FG) →
κ→0

1

3− δ
=

n− 1

n+ (1− δ)(n− 1)
.

Instance 1.2 describes a situation where the system allocates jobs that have a certain

7To provide one concrete example, Uber provides guarantees to new drivers (see, e.g., Rideshare Central
2018), that may perhaps be less productive than more experienced drivers (see, e.g., The Rideshare Guy
2016).

8The Max-Min fair allocations are FmM
G =

{(
{d1}, {d2}

)
,
(
{d2}, {d1}

)}
. All such allocations do not assign

d3, since doing so would mean that one provider would obtain mini p(Ai) = p({d3}) < p({d1}), where the
last inequality follows from the strict monotonicity of p and the fact that v(d3) = 1− κ < 1 = v(d1).



www.manaraa.com

CHAPTER 1. VALUE LOSS UNDER PROVIDER GUARANTEES 24

d1

1

d2

1d3

1− κ d1

1

d2

1d3

1− κ
Prov. 1: γ1 Prov. 2: γ2

Value-maximizing allocation

d1

1

d2

1d3

1− κ
Prov. 1: γ1 Prov. 2: γ2

Max-Min fair allocation

Figure 1.4: Symmetric worst-case instance. The left panel depicts Instance 1.2 that consists
of n = 2 providers and three jobs D = {d1, d2, d3} represented by segments. Jobs can be assigned
together if the corresponding segments are non-overlapping. The right panel depicts the value-
maximizing allocation at the top, and the Max-Min fair allocation at the bottom.

time duration, and where two jobs that overlap in time cannot be assigned to the same

provider — a situation that occurs routinely in ride-sharing platforms such as Uber or Lyft.

A distinctive property of Instance 1.2 is that the system can either assign all the high-value

jobs d1, d2 to one provider while assigning the low-value job d3 to the other provider, or it

can distribute the two high-value jobs among the providers and not allocate the low-value

job. The value loss is thus created since the guarantee imposes the latter allocation, which

results in unassigned jobs; and this loss increases as the unassigned job d3 is very close in

value to each of the allocated jobs d1, d2.

Instance 1.2 thus showcases two new drivers for the value loss. First is the structure

of the set of feasible allocations F, which contains certain exclusion constraints that force

job d3 to be incompatible with both jobs d1 and d2. Note that if job d3 could be allocated

together with either of the two other jobs, then the loss Lγ(F,FG) would vanish. We revisit

such exclusion constraints in §1.4, where we analyze their impact on the value loss in more

detail. Second is the variation in the intrinsic value of jobs; although the loss grows as jobs

become more similar in value (i.e., as κ→ 0), some variation is in fact critical: if κ = 0, the
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loss Lγ(F,FG) would again vanish. Our next instance shows that this variation is actually

not critical to achieving a worst-case loss.

Instance 1.3 (Max-Min fairness with monotonic payments and equal-valued jobs)

Consider n = 2 providers with γ1 = γmax and γ2 = γmin, and a set of jobs D = {d1, d2, d3, d4, d5}

with v(di) = 1 for each i ∈ N . The feasible allocations are depicted in Figure 1.5: jobs can

be assigned together only if the corresponding segments are non-overlapping. The alloca-

tions with guarantees correspond to the Max-Min fair allocations under any strict mono-

tonic payment function, as described in (1.4). Then, the value-maximizing allocation is(
{d1, d2, d3, d4}, {d5}

)
, and a value-maximizing allocation with guarantees is

(
{d1, d2}, {d3, d4}

)
.

Therefore, Lγ(F,FG) = 4γmax+γmin−2(γmax+γmin)
(4γmax+γmin) .9

d1

1

d2

1

d3

1

d4

1d5

1 d1

1

d2

1

d3

1

d4

1d5

1
Prov. 1: γ1 Prov. 2: γ2

Value-maximizing allocation

d1

1

d2

1

d3

1

d4

1d5

1
Prov. 1: γ1 Prov. 2: γ2

Max-Min

fair allocation

Figure 1.5: Symmetric worst-case instance with equal-valued jobs. The left panel depicts
Instance 1.3: there are n = 2 providers and five jobs D = {d1, d2, d3, d4, d5} represented by seg-
ments. Jobs can be assigned together if the corresponding segments are non-overlapping. The right
panel depicts the value-maximizing allocation at the top, and the value-maximizing Max-Min fair
allocation at the bottom.

Instance 1.3 can be generalized to any given number of providers n, by taking a set of

(t + 1)n + t jobs for any integer t > 0 and keeping the same structure of F (details on the

9As in Instance 1.2, the Max-Min fair allocations are all combinations of {d1, d2, d3, d4} into two sets of
two jobs each, and all such allocations do not utilize d5.
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construction are provided in Instance A.3 of Appendix A.1). This generalization yields a

worst-case loss of:

Lγ(F,FG) =
(t+ 1)nγmax + t(n− 1)γmin − (t+ 1)(γmax + (n− 1)γmin)

(t+ 1)nγmax + t(n− 1)γmin

=
t(n− 1) + δ(n− 1)

t(n+ (n− 1)(1− δ)) + n
.

Therefore, for any ε > 0, there exists a t large enough such that Lγ(F,FG) = n−1
n+(1−δ)(n−1)−ε.

Instance 1.3 shares certain similarities with Instance 1.2. Both rely on having a large

number of providers and jobs, and on the presence of exclusion constraints in the set of fea-

sible allocations F that prevent certain jobs from being allocated together. Also, the worst-

case guarantees in both instances correspond to symmetric Max-Min fairness guarantees

obtained under any strictly monotonic payment function. This suggests that in allocation

systems with many providers and sufficiently “standardized” jobs (so that provider hetero-

geneity is not too large), symmetric fairness guarantees can be critical drivers of loss, as

depicted in Figure 1.2. Lastly, it is worth emphasizing that although both Instance 1.2 and

Instance 1.3 involve some heterogeneity in the providers’ effectiveness, this is not critical

to identifying these as worst-case instances; in fact, both instances yield worst-case losses

when providers are homogeneous (δ = 0).

Instance 1.3 also exhibits some notable differences from Instance 1.2: it relies on jobs

with identical value, and it requires an arbitrarily large number of jobs to achieve the worst-

case loss. We return to discuss each of these key drivers — the variation in job values and

the supply/demand imbalance — and their relationship in more detail in §1.4. Additionally,

note that the value of jobs in Instance 1.3 cannot be proportional to the size of the associated

intervals; in contrast, Instance 1.2 can be constructed to satisfy this, which brings it closer

to several practical applications, such as when intervals represent the time to complete a

job and the value generated is proportional to this time.
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We conclude our discussion by noting that all the loss drivers that are critical in In-

stances 1.2-1.3 are irrelevant in Instance 1.1, where the loss is entirely driven by the hetero-

geneity in provider effectiveness. To see this, note that all jobs in Instance 1.1 are assigned

under all the allocations with guarantees FG; thus, no value is lost due to jobs that re-

main unallocated as a result of physical constraints or restrictions imposed by the provider

guarantees. Additionally, note that as long as jobs have some positive intrinsic value in

Instance 1.1, any distribution of values could lead to worst-case losses; thus, the precise job

values are completely irrelevant. Lastly, note that Instance 1.1 can be readily generalized

to obtain the same loss in a setting with an arbitrary number of providers, as long as at

least one maximally effective and one minimally effective provider exist and the guarantees

require allocating jobs only to the latter (see Appendix A.1); thus, having a large number

of providers or imbalanced supply/demand does not impact the loss in Instance 1.1.

1.4 Analysis of Key Loss Drivers

The previous section highlighted several potential drivers for value loss. Perhaps the most

prominent of these is provider heterogeneity: when providers differ in their effectiveness

to generate value (i.e., δ is large), this heterogeneity becomes the dominant loss driver, as

evidenced in Instance 1.1. In this section we focus our discussion on several additional loss

drivers: (i) the structure of the set of feasible allocations F; (ii) the variation in the intrinsic

values of jobs; (iii) the balance between supply (number of providers) and demand (number

of jobs); and (iv) the integrality of allocations.

1.4.1 Structural Properties of the Set of Feasible Allocations

When heterogeneity is not the main loss driver, the structure of the set of feasible allocations

F can be crucial, as Instances 1.2 and 1.3 demonstrated; recall that each of those instances

involved certain exclusion constraints, whereby some jobs could not be allocated together

to the same provider. Our next example shows that such constraints are critical: when the
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set F only includes constraints on how many jobs can be allocated together but without

other explicit exclusion constraints, the value loss vanishes. Notice how we assume that all

providers are homogeneous (all γi are equal) in order to eliminate the effect of heterogeneity

on the value loss.

Instance 1.4 Consider a case with homogeneous providers, γi = γ, ∀ i ∈ N . Let {ki}ni=1

be n positive integers, and suppose that F = {(A1, . . . , An) | Ai ⊆ D, |Ai| ≤ ki,∀i, and Ai ∩

Aj = ∅, ∀i 6= j}.

Proposition 1.3 Instance 1.4 satisfies Lγ(F,FG) = 0 for any set of allocations with guar-

antees FG.

This result becomes even more striking when the structure of the feasible sets in In-

stances 1.2 and 1.3 is further broken down. In particular, note that the set of jobs in each

of those instances is composed from some jobs that can be allocated together (with no

further constraints) and a single job whose allocation precludes a provider from executing

any other job. Our next instance generalizes these structures.

Instance 1.5 Consider any γ, a set of jobs D = S ∪C, and a set of feasible allocations of

the form:

F = {(A1, . . . , An) | Ai ∩Aj = ∅, ∀ i 6= j and

for every i ∈ N, either Ai ∩ C = ∅ or |(Ai ∩ C)| = 1 and Ai ∩ S = ∅}.

The jobs described in Instance 1.5 can be divided into a set of unconstrained jobs S and

a set of jobs C, each of which cannot be allocated together with any other job in D. Each

of these sets of jobs considered in isolation would give rise to a set of feasible allocations

that would conform to the premises of Instance 1.4 (with capacity ki = ∞ or ki = 1,

respectively), and thus result in zero loss. It is thus striking that by simply combining these

two sets as done in Instance 1.5, one in fact obtains an instance that could either have zero

loss or a worst-case loss, as formalized in the next result.
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Proposition 1.4 Consider Instance 1.5, then:

(i). If v(d) = v, for all d ∈ D, and |S| < 2n, Lγ(F,FG) = 0 for any uniform income

guarantee FG.

(ii). If v(d) = 1 − κ for all d ∈ C, v(d) = 1 for all d ∈ S, |C| = n − 1, and |S| = n, we

recover Instance 1.2 by taking FG as the Max-Min fair allocations under any strictly

monotonic payment function.

Proposition 1.4 implies that the feasible set structure can carry significant impact, but

also that this structure in isolation is not a good predictor of value loss: the same structure

could generate very large or very small losses, depending on other problem features such

as the value of jobs or the imbalance between supply (number of providers) and demand

(number of jobs). Notice how all conditions in (ii) satisfy the conditions in (i), except for

the deviation in the intrinsic values of jobs in C. This also shows how small changes in an

instance can lead to large changes in the value loss.

We conclude by noting that the symmetry of the set of feasible allocations F is also

very important for our results. If this assumption were relaxed, e.g., if providers had

different sets of jobs they could complete, then we can actually achieve a worst-case loss

that asymptotically approaches 100% as the number of agents grows large (see Instance A.4

of Appendix A.1). This instance is actually inspired by the bandwidth allocation problem

considered in Bertsimas et al. (2011), and matches the upper-bound on the price of fairness

proved therein. This finding is consistent with our earlier result concerning the impact of

heterogeneity in the providers’ effectiveness to generate value from jobs, and it reinforces

the idea that when providers are sufficiently “different,” this can critically drive the losses,

making them unbounded in extreme cases. To further explore this, in Appendix A.2 we

analyze numerically the average relative loss for a family of instances with a varying degree

of symmetry, measured by the proportion of all the jobs that each provider can perform.

Interestingly, we find that as the instances become more asymmetric, the average losses

decrease.
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Intuitively, when each provider can perform a smaller fraction of all jobs, the probability

of two providers being able to perform the same job decreases. In the extreme case this

leads to zero loss: if no job can be performed by two providers, then the allocation problems

can be separated into disjoint problems for each provider, which, by Proposition 1.5 implies

that the value loss will be zero. Nevertheless, this decrease in the average loss is tied to the

assumption that the subset of jobs a provider can perform is independent across providers.

In fact, in Instance A.4 of Appendix A.1, the high loss is driven by a specific segmentation

of the providers into two groups, each with a particular set of jobs they can perform. This

suggests that the relative value loss is significantly influenced by the specific notion of

symmetry considered, and that the impact of symmetry can be nontrivial: allowing for

very high asymmetry might lead to very high worst-case losses, but asymmetry might also

decrease the average losses in some cases.

1.4.2 Variation in Intrinsic Job Values

Instance 1.2 showed that the difference in the intrinsic value of jobs can be a key driver of

the value loss, and that this loss can decrease as jobs have increasingly different intrinsic

values. To further explore the impact of this feature, we now consider a slight modification

of Instance 1.2 where we introduce a random perturbation in the value of one of the jobs,

and we consider the expected loss as a function of the variance of this perturbation. Since

each realization of the random perturbation corresponds to a particular Instance 1.2, when

the variance of the perturbation is high we will obtain higher differences in the intrinsic

values of jobs.

Example 1.1 Consider Instance 1.2 with γmin = γmax, and assume that κ is uniformly

distributed κ ∼ U [−∆
2 ,

∆
2 ], so that v(d3) ∼ U [1 − ∆

2 , 1 + ∆
2 ]. By taking the expectation of
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the loss with respect to this random variable, we get:

E[Lγ(F,FG)] = E
[

v(d3)

2 + v(d3)
1{v(d3) ∈ [0, 1]}

]
=

∫ 1

max{0,1−∆
2
}

1

∆

(
s

2 + s

)
ds

=
1

∆

(
1− 2 log(3)−max

{
0, 1− ∆

2

}
+ 2 log

(
2 + max

{
0,

∆

2

}))
.

Note that E[Lγ(F,FG)] is decreasing in ∆; and since the variance of v(d3) equals the

variance of κ which equals ∆2

12 , this implies that E[Lγ(F,FG)] is decreasing in the variance

of v(d3): higher variance implies lower expected loss.

Interestingly, this example suggests that when intrinsic values are randomly generated,

higher variance in values could actually reduce the impact of implementing provider guar-

antees, and result in a lower expected loss. The example can be generalized to a case with

n providers (see Example A.1 in Appendix A.1), and we also confirm its robustness in a

more realistic setting as part of our numerical exercise in §1.5. However, it is also worth

noting that although these examples suggest that lower variation tends to lead to higher

value losses, the relationship may exhibit a sharp discontinuity when there is no variation

at all. This is already evident in Instance 1.2, where requiring all jobs to have the same

identical value reduces the relative loss under any uniform income guarantees to zero; this

pattern continues to occur in many of the data-driven instances we analyze in §1.5.

1.4.3 Supply-Demand Balance

Instance 1.3 suggested that the imbalance between supply (number of providers) and de-

mand (number of jobs) can also critically drive the value loss. To build further intuition

for this, we examine certain extreme cases that allow an analytical characterization. The

next result shows that when a single provider or a sufficiently large number of providers are

present, the value loss vanishes. We again limit the effect of heterogeneity on the value loss

by assuming that all providers are homogeneous.
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Proposition 1.5 Assume that γmin = γmax, and consider any set of allocations with guar-

antees FG. Then Lγ(F,FG) = 0 if either n = 1 or n ≥ |D|.

Additionally, if we restrict attention to uniform income guarantees and jobs with identi-

cal intrinsic values, then the value loss would be zero for an even larger number of providers,

as formalized by the following result.

Proposition 1.6 Assume that γmin = γmax, and let n > |D|/2 and v(d) = v for all d ∈ D.

Then, Lγ(F,FG) = 0, for any uniform income guarantee FG.

The intuition behind this result is that when there are insufficient jobs to guarantee

each provider at least two jobs, then there will be no value loss from guaranteeing the same

level of income to all providers. This suggests that the value loss is likely small when the

supply-demand imbalance is high, i.e., the ratio of supply to demand is either very low or

very high. Although it is hard to analytically prove this more generally, we confirm it in

our numerical tests in §1.5, where we find that increasing the number of providers for a

fixed number of jobs initially increases and eventually decreases the value loss, on average.

1.4.4 Integrality of Allocations

The integrality of allocations is critical for the appearance of loss in our framework: when

partial allocations of jobs are possible, the loss vanishes for any uniform income guarantee

FG. To formalize this, we first define the set of fractional allocations Fc obtained by allowing

an arbitrary mixing of allocations from F:

Fc =

({θj}kj=1, {Aj}kj=1

)
| 0 ≤ θj ≤ 1,

k∑
j=1

θj = 1,Aj ∈ F,∀j ∈ {1, . . . , k}, k ≥ 0

 .

(1.8)

Each tuple of Fc represents a specific mixing of allocations from F, and can be in-

terpreted as allocating a fraction θj of the jobs from each allocation Aj . Hence, for

C = ({θj}kj=1, {Aj}kj=1) ∈ Fc, let us denote by Ci = ({θj}kj=1, {A
j
i}kj=1) the specific mixing
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allocated to provider i, and let us extend our value functions such that

v(Ci) =

k∑
j=1

θjv(Aji ). (1.9)

Additionally, given any payment function p(·) that is monotonic with respect to v(Ci),

we define the set of uniform income guarantees Fc
G = {C ∈ Fc | p(Ci) ≥ τ, for i ∈ N}.

The following result shows that the relative loss vanishes for any uniform income guar-

antees.

Proposition 1.7 Given any γ and any set of feasible allocations F, consider the set Fc

defined in (1.8) and the extension of v(C) defined in (1.9). Then, Lγ(Fc,Fc
G) = 0 for any

set of uniform income guarantees under monotonic payments Fc
G.

The intuition behind Proposition 1.7 is that when fractional allocations are possible,

the system can simply consider an allocation obtained by mixing with an equal proportion

1
n! all the permutations of a particular value-maximizing allocation. This new allocation

would still achieve the maximum value, while also allowing each agent to generate exactly

the same value, and thus remaining feasible under any uniform income guarantee.

Our definition of fractional allocations is motivated by settings with finite periods and

similar jobs being allocated in each period. Thus, while the jobs being allocated cannot

be partitioned in each period, overall the allocations may be randomized across periods.

Therefore, our result in Proposition 1.7 suggests that for certain provider guarantees defined

with respect to average monotonic payment functions, the loss can be driven close to zero

by correctly randomizing the allocations.

1.5 Numerical Analysis of Real-world and Synthetic Data

To demonstrate the impact of our findings in a practical context, we next provide a numerical

study that is based on real and synthetic data.
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Basic setup. We design our study around the problem of allocating requests for trans-

portation (taxi rides) to drivers. The set of service providers consists of n drivers, where

we consider values of n ∈ {2, 3, . . . , 30}. We assume that drivers are homogeneous, and

thus γmin = γmax = γ, which we normalize without loss of generality to 1. The set of jobs

D corresponds to trip requests that arrived in a particular time window. Each job/trip

is specified as a continuous time interval given by a start time and a trip duration. Two

trips can be allocated together to the same driver only if the corresponding time inter-

vals do not overlap. We therefore construct the set of feasible allocations F by putting

together all the allocations (A1, . . . , An) consisting of n mutually exclusive subsets of trips

(Ai ⊆ D,Ai ∩ Aj = ∅, ∀ i 6= j) where each subset Ai contains only non-overlapping trips.

The set of allocations with guarantees FG is obtained by considering Max-Min fairness

considerations under revenue sharing, as discussed in §1.2.3. To obtain the relative value

loss Lγ(F,FG), we compute the value-maximizing allocation and the best restricted alloca-

tion by solving integer programming problems when allocations are picked from F and FG,

respectively. Further details on our setup are provided in Appendix A.2.

Real data. We generate problem instances using a publicly available dataset contain-

ing all the completed taxi trips in New York City (NYC Taxi and Limousine Commission

2016) for January 2016. The record for every completed trip includes the total fare paid,

the starting and ending location, the starting time, and the trip duration. Each set of jobs

we considered consists of trip requests originating and ending in a specific neighborhood of

the city; we considered in separation Midtown Manhattan, Upper West Side, or Upper East

Side. Limiting the geographical area ensures that part (ii) of Assumption 1.1 concerning

the standardized nature of jobs is satisfied, in that any provider in the area can perform any

subset of (non-overlapping) trips; in Appendix A.2, we present more complex feasibility re-

strictions that allow us to consider all trips in the city while still satisfying this Assumption.

For each neighborhood, we focus on the first week of January 2016; we consider, for each

particular day in that week, all the trips completed between 9am and 5pm, a time segment

during which the number of trips-per-minute was approximately constant. We partition the
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time horizon into intervals of w minutes each, where we considered w ∈ {10, . . . , 20}. For

each of these intervals, we sampled uniformly 30 trips to generate a problem instance. We

consider the value generated by each trip as the total trip fare that was paid to the driver.

Synthetic data. To better control the impact of different parameters on the value loss,

we also construct synthetic instances. We obtain these by first considering a particular time

window (0, x] ⊆ R for different values of x ∈ (1, 3). We then generate 30 trips as subintervals

of (0, x], with the starting point of the trip sampled uniformly, and the trip length drawn

from a truncated normal distribution; we use a mean of 1 and several coefficients of variation

cv ∈ (0, 0.6] for the duration. We fix the value produced by each job as the length of the

associated interval.

Results and Discussion. We next present a brief summary of the numerical findings,

and we direct the reader to Appendix A.2 for a more complete analysis. Figures 1.6 and 1.7

depict specific examples of feasible sets F generated by the data-driven instances, together

with the optimal allocations with and without the Max-Min fair guarantees. In these graphs

each vertex represents a trip and has a label that corresponds to the trip value; two trips are

joined by an edge if they overlap in time, and an allocation is a (possibly partial) coloring

of the graph with n colors. In the instance depicted in Figure 1.7, all values were taken

to be equal. This structure resembles Instance 1.5, in that there is a relatively large set of

jobs that are mutually exclusive combined with a smaller sets of jobs that can be allocated

together.

In all our instances, when all the job values are set equal – so that the variation in

values disappears – we obtain a loss of zero. This is consistent with Proposition 1.4, and is

reasonable to expect precisely because many of our data-driven instances match Instance 1.5,

which is the premise for Proposition 1.4 (refer again to Figures 1.6 and 1.7 and our earlier

discussion). This implies that in the instances that we studied numerically, the variation in

job values is a prominent driver of loss.

In Figure 1.8 we provide a representative example of the results we obtain. Both panels
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Figure 1.6: Graph representation of the set of feasible allocations F of an instance. Each
node represents a trip, labels represent the fare, and two nodes are connected by an edge when they
cannot be allocated together. (left) A value-maximizing allocation of the jobs to n = 3 providers,
with the allocation to each provider given by a different color and shape. The total value allocated is
$66.89, and the provider with the smallest allocation receives $20.45. (right) A (value-maximizing)
max-min fair allocation. The total value allocated is $63.64, and the provider with the smallest
allocation receives $20.46.
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Figure 1.7: Graph representation of F for an instance where trips have identical intrinsic
values. Each node represents a trip and two nodes are connected by an edge when they cannot be
allocated together. A value-maximizing and Max-Min fair allocation with 2 providers is represented
by the coloring and shapes in the nodes. The maximum amount of trips that can be allocated to
two providers is 5, by allocating the only three trips that can be completed together to one provider,
and two other trips to the other provider.

depict the relative value loss as a function of the number of providers. The left panel shows

the average and maximum loss in the instances generated from real-world data, and the right

panel corresponds to the average loss in the synthetic instances, for different coefficients of
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variation. In the taxi data that we considered, the coefficient of variation in job values was

0.48, so that the magnitude of the losses is consistent in the two examples. Moreover, that

the maximum and the average loss are relatively close in the left figure suggests that losses

come from structural properties of the instances rather than a low frequency occurrence of

instances with high relative value loss.
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Figure 1.8: Relative value loss in particular instances. (left) Average and maximum values
of the relative value loss Lγ(F,FG) as a function of the number of providers, for instances with 30
jobs constructed from the data, using a time window of w = 16 minutes. (right) Average value of
the relative value loss Lγ(F,FG) as a function of the number of providers for synthetic instances
with different coefficients of variation (cv), and using the parametric value x = 1.6.

Both charts confirm several of our earlier observations. The right panel in Figure 1.8

shows that the maximum loss decreases with the variability in job values, which is consistent

with our discussion in Example 1.1. Additionally, the charts are consistent with the results

in Proposition 1.5, and highlight the same qualitative features. For example, the value

loss has a unique peak that appears for a ratio of supply to demand between 2
3 and 1

2 , and

decreases to zero when the number of providers becomes sufficiently high or sufficiently low.

In addition to confirming several of our analytical findings, these numerical results also

imply that the value loss associated with implementing provider guarantees in particular

settings may be significantly smaller than the worst-case value loss that was characterized in
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Theorem 1.1: the relative loss did not exceed 10% in the instances generated synthetically,

and did not exceed 4% in the instances generated from real-world data. Together with

the rest of our numerical findings, this suggests that the exact (relative) losses may be

significantly smaller in particular settings of practical interest.

1.6 Conclusions, Limitations and Future Research

In this paper we established that the relative value loss due to a broad class of provider

guarantees is bounded. We further showed that the worst-case losses are primarily driven

by fairness considerations when a many providers are present, and by the heterogeneity

in the providers’ effectiveness to generate value when fewer providers are present. We

analyzed several additional loss drivers, finding that both a high variation in the intrinsic

values of the jobs as well as a very imbalanced (i.e., either very high or very low) ratio of

supply to demand would lead to smaller losses. Finally, we confirmed several of the findings

numerically using both real and synthetic data, and documented that value losses in specific

practical settings may be significantly lower than the (theoretical) worst-case values.

These findings and certain limitations in our modeling framework motivate future work

of both theoretical and practical nature. Having established that losses are bounded in

a general setting and under a broad class of provider guarantees, one could also seek to

quantify losses in more specific settings or for subclasses of guarantees obtained as special

cases of our framework. For instance, one could seek a parametrized upper-bound on the

relative loss when guaranteeing a specific income level to providers, or to quantify losses

in specific operational settings such as ride sharing platforms for instance, which would be

closer in spirit to our numerical exercise in §1.5. These experiments also suggest that it

may be worth studying the average-case loss as opposed to the worst-case loss, both due

to the substantial gap between the two, but also because certain qualitative effects may be

provable under the former setting but not the latter; for instance, the average relative loss

appears to be a unimodal function of the number of providers, whereas the worst-case loss

does not.
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Several of our results also suggested that the degree of symmetry in set of feasible al-

locations can play a critical and non-trivial role: while asymmetry could in principle lead

to unbounded worst-case losses, allowing some asymmetry could actually help reduce em-

pirical losses in some cases of practical interest. To that end, it would be very interesting

to understand more deeply the role of symmetry, e.g., by relaxing our standing Assump-

tion 1.1(ii) and introducing a tractable notion that allows a bounded degree of asymmetry

in the providers’ capability to execute jobs.

Lastly, and from a more prescriptive viewpoint, losses remaining bounded for many types

of guarantees also opens the path to exploring policies that could achieve these guarantees

dynamically and in an online fashion under partial information, when the streams of future

jobs are unknown.
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Chapter 2

Improving Smallholder Welfare

While Preserving Natural Forest:

Intensification vs. Deforestation

2.1 Introduction

Out of the 1.4 billion people living on less than US$1.25 per day, one billion are smallholder

farmers working on land plots smaller than 2 hectares (Rapsomanikis 2015). Yet, at the

same time, over 80 per cent of the food consumed in a large part of the developing world is

produced by smallholders (IFAD 2013). This puts smallholders at the center of the global

efforts to both reduce poverty and increase agricultural production. The latter being ever

more important given the rising food demand that is roughly expected to double by 2050

(Tilman et al. 2011). Motivated by these goals and inspired by the Asian Green Revolution

of the 60’s and 70’s (Hazell 2009), governments and NGOs have been actively implementing

programs to increase agricultural productivity (see e.g., Djurfeldt et al. 2005, Rashid et al.

2013).

Many of these programs have had some success in increasing the total agricultural pro-

ductivity. However, in many cases, they have also contributed to the increasing rates of

40
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tropical deforestation (see § 2.1.2). Indeed, agricultural expansion has been widely recog-

nized as one of the main causes of tropical deforestation (Geist and Lambin 2002, Kissinger

et al. 2012), which in turn is one of the leading causes of anthropogenic Green House Gas

emissions (Houghton 2012).

At the same time, the rising temperatures and increased variability of weather events

caused by climate change directly affects smallholders (Nelson et al. 2014). Faced with

little capital and higher variability in their costs, smallholders turn to land expansion.

This makes it even more important to understand the following question: can agricultural

intensification be achieved while avoiding deforestation?

In order to better understand the answer to this question, we present a dynamic model of

farmer operations under liquidity constraints and random production costs. We show that

the combination of these two factors plays a major role in determining when intensification—

defined as any increase in agricultural productivity—will exacerbate or mitigate deforesta-

tion. In particular, we show that reducing the cost of intensification can either increase

or decrease the deforestation pressure, depending on how large the marginal intensification

costs are compared to the variation in production costs.

2.1.1 Main Contribution

We develop a general dynamic model of a farmer’s operations, allowing for both productive

and land-clearing decisions under liquidity constraints. This allows us to study the effects of

changing the farmer’s cost structure on their optimal decisions. Our model confirms many

previously found results on how farmer welfare increases when reducing production costs

(both the average and variability of costs), and when improving access to loans (e.g., Asfaw

et al. 2012). Furthermore, we show that although all of these changes would increase the

total intensification effort of farmers, they would also lead to a higher rate of deforestation.

We show that, surprisingly, directly reducing the cost of intensification may have dif-

ferent effects on the rate of deforestation: if the intensification cost is low compared to

the production cost variability, reducing the intensification cost reduces the deforestation
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pressure. On the other hand, if the intensification cost is high, a reduction would increase

the pressure. This result helps to shed light on the contradicting empirical evidence linking

intensification promotion and deforestation (see §2.1.3).

Central to our results is our consideration of random production costs that are directly

proportional to the total productive land. These random shocks occur frequently in practice

due to uncertainty when bringing products to market. For instance, transportation costs

may be greatly affected by weather conditions when roads are not paved, or labor costs may

be higher than expected during harvest season. These risks in the total production costs

combine with liquidity constraints to generate a downward pressure on the deforestation

rate: faced with a high risk of having to borrow at high interest rates, farmers react to a

reduction in the cost of intensification by increasing their rate of production in a smaller

productive area.

Our results highlight the importance of considering the specific operational context

when designing policy interventions. As has been shown many times in practice, the in-

discriminate application of policies can have significant negative consequences. Our model

helps policy makers understand the relationship between intensification and deforestation

by categorizing farmers and communities of farmers based on their intrinsic characteristics.

2.1.2 Related Literature

The Environmental Science literature has widely documented that agricultural expansion

is the dominant driver of illegal deforestation in developing countries (e.g., Carlson et al.

2018, Geist and Lambin 2002). Although there are many proximate causes of deforestation

processes, such as economic and institutional factors, the question of whether yield increases

is one of these causes is still very much under debate. There is a significant amount of

empirical evidence showing how yield increases may lead to both lower rates of deforestation

and, on the contrary, higher deforestation rates (see §2.1.3 for a summary of some of these

settings). Stemming from these empirical observations, there has been extensive work

in the Agricultural Economics literature to shed light on these seemingly contradictory



www.manaraa.com

CHAPTER 2. SMALLHOLDER WELFARE AND FOREST PROTECTION 43

effects (see Angelsen and Kaimowitz 2001 and Angelsen and Kaimowitz 1999 for excellent

reviews of these models). Most of the explanations put forth in this body of work can

be broadly categorized into three types: labor supply driven (e.g., Maertens et al. 2006,

Shively and Pagiola 2004), driven by the elasticity of demand for the agricultural products

(e.g., Jayasuriya et al. 2001), or driven by the different types of utility functions of the

farmers (e.g., Angelsen et al. 2001). Our work adds to this discussion by considering the

role of random production costs paired with liquidity constraints and showing how these

two factors play a major role in determining how intensification will affect deforestation.

To develop our model of farmer operations, we use insights from development economics,

operations-finance, and sustainable-operations. From the latter, our model generalizes the

farmer dynamic model presented in de Zegher et al. (2018), by allowing for dynamic de-

forestation decisions and generalizing the concave production functions used. From the

operations-finance literature, our formulation resembles the models of dynamic produc-

tion decisions under limited cash inventory, such as Li et al. (2013) and Ning and Sobel

(2017). In our model, farmers experience Guassian production cost shocks, that drive them

to informally borrow at high rates from specific agents within their community, this is in

line with findings from the Development Economics literature (e.g., Collins et al. 2009).

Economists have documented that smallholder farmers have limited access to the formal

financial system, and rely on informal loans within their communities (Duflo and Banerjee

2011), paying interest rates that increase in the size of the loans. To model these increasing

interest payments we adopt an exponential function (see e.g., Ghosh et al. 2000).

In the Environmental Economics and Mechanism Design literature there has been re-

cent interest in designing optimal mechanisms to halt deforestation and preserve natural

ecosystems (see, e.g., Mason and Plantinga 2013, Li et al. 2020). Most of these works

have been focused on the design of Payments for Ecosystem Services, and not on the de-

tailed operations of farmers. Although in our work we aim at establishing mechanisms for

forest protection, we concentrate on the farmers’ production operations, and not on the

principal-agent problems that arise from the possible conservation mechanisms.



www.manaraa.com

CHAPTER 2. SMALLHOLDER WELFARE AND FOREST PROTECTION 44

Our work connects as well with the growing body of work in the operations management

literature aimed at improving farmers’ welfare and social welfare in agricultural supply

chains (see Bouchery et al. 2016 and Kalkanci et al. 2019 for reviews). Several recent

studies have focused on the production operations of farmers (e.g., Dawande et al. 2013,

Boyabatlı et al. 2019, Federgruen et al. 2019, Hu et al. 2019, Levi et al. 2020), as well as the

effects of different subsidy schemes on farmer’s decisions (e.g., Chintapalli and Tang 2018,

Alizamir et al. 2019, Akkaya et al. 2021). In our work we not only examine mechanisms

that lead to higher farmer welfare, but study dynamic deforestation decisions.

2.1.3 Examples

In this section we present several empirical examples of how promoting intensification has

lead to both increase and decrease of deforestation pressures. The purpose of this section is

to illustrate how our result connects to the empirical literature, but it is not an exhaustive

review of all such works (see Angelsen and Kaimowitz (2001) and references therein for a

broader review).

Governments and NGOs routinely implement two types of programs to incentivize in-

tensification; the first aimed at reducing the cost of inputs, such as fertilizers or pesticides

(see, e.g., Pelletier et al. 2020), the second aimed at decreasing the cost of new technology

adoptions, such as higher yield seeds or better agricultural practices (see, e.g., Garrett et al.

2013).

In the case of reducing the cost of inputs, this is usually done through either subsidies

or low interest rate credits. This is the case for the fertilizer subsidy programs implemented

in Zambia and Malawi (see Pelletier et al. 2020, Abman and Carney 2020). Interestingly,

although both programs were implemented with similar goals and were indeed successful

in increasing yields and farmer welfare, the evidence suggests that in Zambia increased

fertilizer use was weakly linked to increased deforestation, while in Malawi, the reverse was

found.

In order to reduce the cost of new technology adoption, interventions usually include a
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combination of training and subsidies for the purchase of new improved inputs (e.g., better

seeds). In the case of the Brazilian policy of providing low interest rate credits for the

purchase of higher producing soybeans (that was put into place at the end of the 20th

century) the results suggest that the improvement in yields led to a higher deforestation

rate of the Amazonian forest (Garrett et al. 2013). In Malawi and Zambia, together with

the fertilizer programs, the governments implemented high subsidies for the purchase of

high-yield maize seeds (Pelletier et al. 2020, Abman and Carney 2020). In contrast to what

happened when subsidizing fertilizer, the yield increase caused by the new maize-seeds

reduced deforestation in both countries. This same effect was observed in Bangladesh, after

government programs subsidized higher yielding crops (Aravindakshan et al. 2021).

Finally, examples of training in better agricultural practices and technologies can be

found Indonesia and Malaysia (e.g., Maertens et al. 2006, Villoria et al. 2013). In the case

of Indonesia, Maertens et al. (2006) differentiate between the effects observed by yield-saving

technologies (that reduced deforestation) and labor-saving technologies (that increased de-

forestation). While Villoria et al. (2013) observed an increase in deforestation related to

higher yields in the oil-palm value chain. Table 2.1 provides a summary of these varied

empirical findings.
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Country Type of Intervention Does Intensification Lead to
Deforestation?

Reference

Brazil Credits for purchasing
better yielding
soybeans.

Yes,higher yields led to increased
deforestation in the absence of
strong regulations.

Garrett et al. (2013)

Indonesia
(Lore
Lindu)

Introduction of labor
saving and yield
increasing technologies.

Labor saving technologies
increased deforestation, yield
increasing technologies reduced
deforestation.

Maertens et al. (2006)

Indonesia
and
Malaysia

Training in better
agricultural practices
and technologies.

Yes, higher yields were associated
with higher deforestation.

Villoria et al. (2013)

Zambia Subsidy of fertilizer
and improved maize
seeds.

Fertilizer subsidy was weakly
linked to increased deforestation;
Improved seeds use was linked to a
decrease in deforestation.

Pelletier et al. (2020)

Malawi Subsidies for fertilizer
and higher yield seeds.

No, lower rates of deforestation
were observed.

Abman and Carney (2020)

Bangladesh Introduction of higher
yielding crops.

No, lower rates of deforestation
were observed.

Aravindakshan et al. (2021)

Table 2.1: Empirical evidence on the Intensification-Deforestation connection. Summary
of some of the many works showing how intensification can either cause or prevent deforestation.

2.2 Model Formulation

We model the operations of a liquidity constrained smallholder-farmer that at every period

faces a random production cost shock and must decide on both consumption and production

decisions. At the start of each discrete production period n, the farmer observes the current

market price pn, exogenously fixed, and makes three decisions: the rate of consumption

cn, the total amount of land to expand ldn, and the total amount of productive inputs or

technologies used per unit of time and per unit of land, yn (henceforth we shall refer to

this term as the productive expenditure rate). The productive-expenditure may represent

the total amount of certain inputs used (e.g, fertilizer, pesticides, insecticides, or labor for

preparing the field, planting, and weeding) or the level of adoption of productive technologies

(e.g., higher-yield seeds, increased water use), and is characterized by having a concave
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increasing effect on the total yield.

Formally, consider the time interval [0, D] divided into production periods of length τ .

Let the n-th time period be the interval [(n− 1)τ, nτ ] (we assume for simplicity that D is

a multiple of τ), and let N := D
τ be the total number of periods. The timing of decisions

is then as follows: at the beginning of the n-th period (i.e., time (n − 1)τ), the farmer

observes the market price pn, which we assume comes from an exogenous random process,

and that will be paid at the end of the n-th production cycle (i.e., time nτ). Additionally,

at the start of the n-th period, the farmer has a cash position xn, and total productive

land `n. At this time the farmer decides the consumption rate per unit of time cn, the

productive-expenditure rate yn ≥ 0, and the total land to expand during period n, `dn.

The productive-expenditure rate will generate a rate of production given by (yn)λ`n during

period n, for a fixed 0 ≤ λ ≤ 1. This leads to a total production of (yn)λ`nτ , during the nth

period. Although the land expansion occurs at the start of the period, the land expanded

will not become productive until the next period (i.e., time nτ). The total consumption

during period n will be cnτ . At the end of each period, the farmer receives a payment of

(yn)λ`nτpn. The land expansion at the start of the period will have a total cost of (`dn)+d,

where d is the combination of the cost of clearing and making the new land productive.

During period n, the farmer will face a total production cost of

((yn)λWn + ynq)`nτ. (2.1)

Where q is the linear cost of the productive-expenditure yn (which we will refer to as the

cost of intensification), and Wn is a random production cost shock normally distributed

with mean k and variance σ2. Finally, we capture the lack of access to financial markets

of the farmer by considering interests (e−ατxn − 1) to be paid at the end of each period.

A farmer can only incur debt (xn < 0) by borrowing for one production cycle from within

the community, and likewise can lend excess money to the community members. The

exponential function is capturing the increasing marginal rates of borrowing (and decreasing
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marginal rates for lending). This leads to the following dynamics for the farmer’s cash

position:

xn+1 = xn + ((yn)λ`nτ)pn︸ ︷︷ ︸
production

revenue

− cnτ︸︷︷︸
consumption

− (r(yn)Wn + qyn)`nτ︸ ︷︷ ︸
production

and intensification
costs

− (e−ατxn − 1)︸ ︷︷ ︸
interest payments

− (`dn)+d︸ ︷︷ ︸
deforestation

cost

(2.2)

Additionally, the land expansion decision `dn leads to the following land dynamics:

`n+1 = `n + `dn. (2.3)

Subject to these dynamics the farmer will maximize her expected discounted consumption:

E
[∫ D

0
e−τβcdt/τedt

]
= β̂E

N+1∑
n=1

e−nβτ cn. (2.4)

Where β̂ = 1−e−βτ
β , and the terminal condition is cN+1 = (xN+1 − (e−ατxN+1 − 1)) /τ ,

which corresponds to the consumption of all the cash remaining net of interest payments.

In the objective, β represents the farmer’s discount rate. We refer to the farmer’s expected

discounted consumption as the farmer’s welfare.

2.2.1 Modelling Assumptions

Timing of farmer’s decisions. We assume that farmers decide on their consumption

and productive-expenditure rates, as well as the total amount of land they will clear at

the start of each period. This assumption not only helps with tractability, but is rooted

in practice. Farmers often make production and consumption decisions at the time of cash

inflow (see e.g., Collins et al. 2009, Duflo and Banerjee 2011).

Cleared-land production lag. The land cleared at the start of each period will only

be considered productive for the next period. This assumption captures the lag between
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starting to clear land and harvesting from that land. This lag has two main sources: first,

clearing land is usually done with manual labor which takes a considerable amount of

time (Ketterings et al. 1999), second, once the crops are planted, the time until productive

maturity may vary between 100 to 200 days for crops such as maize and ginger (India-Agro-

Net 2021a,b) to 42 months for perennial crops such as oil palms (Verheye 2010). Although

we are assuming, for simplicity of exposition, the lag to be of one period, all our results can

be readily extended to a fixed arbitrary lag T (i.e., `n+1 = `n + `d(n+1)−T ).

Production function. We consider the effect on the yield from a production-expenditure

of y to be (y)λ, for a fixed 0 ≤ λ ≤ 1. This is in line with the notion of decreasing marginal

returns that are found in almost all production technologies. In particular, if we consider

y to represent the total rate of labor dedicated to production, by increasing the amount

of labor, the farmer can increase the total production, but the rate of increase per unit

of labor will be decreasing (Shephard and Färe 1974). If we consider y to represent the

rate of fertilizer application, then the function yλ captures the yield response curve, which

has been thoroughly documented to be concave, and is commonly estimated as a power

function, with the most common exponents used being λ = 0.5 and λ = 0.75 (Tilman et al.

2011, Bélanger et al. 2000, Cerrato and Blackmer 1990, Hagin 1960).

Production cost shocks. We consider random production cost shocks in (2.1) given

by Wn(yn)λ`n. A primary example of these random cost shocks is the delivery cost faced

by many smallholders in frontier regions, where roads are seldom paved, leading to highly

increased costs when there is enough rain to turn the dirt into mud. Additional random

costs associated to bringing the product to market may be linked to higher than expected

labor costs at harvesting season.

Market price process. We assume that the market price received by the farmer, pn, is

exogenously determined. This is consistent with many situation in which farmers produce

commodity products, such as maize, oil-palm, or cocoa, where the price is mostly fixed by
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the international markets and not affected by the farmer’s own production quantity. These

settings are of particular importance, as many of the major documented cases of tropical

deforestation are linked to the production of such crops (see Gatto et al. 2017 for a reference

on oil-palm production in Indonesia, Bruun et al. 2017 for the case of maize production in

the highlands of Thailand, and Kroeger et al. 2017 for an account of deforestation in the

Cocoa supply chain). We will assume that pn ≥ k, for every n, this assumption avoids

the case where production is trivially not sustainable. Additionally, we will assume that

E(pn+1|σ({pi}i≤n)) is increasing in pn. This implies that observing higher current prices

does not lead to lower expected prices in the future. This is consistent with a wide variety

of stochastic processes, including any Markovian price process, as well as any submartingale

adapted to σ({pi}i≤n).

Negative consumption. While we allow the farmer’s consumption cn to become negative

(which can be interpreted as farmers borrowing food from friends and family), we penalize

this in the farmer’s welfare function (2.4). This assumption is needed for tractability.

Exponential interest payments. Increasing interest rates for larger loans have been ex-

tensively documented in the development literature (Duflo and Banerjee 2011, Collins et al.

2009, Ghosh et al. 2000). We capture these increasing loan rates by using an exponential

function e−ατxn . We assume as well that no farmer would forgo current consumption in

order to lend money and use the interest earned in the future (i.e., α ≤ (eβ − 1)/τ).

2.3 Results

Theorem 2.1 characterizes the farmer’s optimal policy.

Theorem 2.1 In each period n, the farmer will choose the following productive-expenditure
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and consumption rates, as well as total land cleared:

`dn = (ˆ̀
n+1 − `n)+, (2.5)

yn = y∗n(`n, pn) (2.6)

cn =
1

τ

(
xn + pn(y∗n)λ`nτ − (qy∗n + k(y∗n)λ)`nτ − (e−ατxn − 1)− (`d∗n )+d− g∗n

)
(2.7)

Where g∗n = 1
ατ

(
(`n(y∗n)λαστ2)2/2− log( e

βτ−1
ατ )

)
, and y∗(`n, pn) solves:

(y∗)λ−1λ`nτ(pn − k)− (y∗)2λ−1λ`2nτ
3σ2α(1− e−βτ ) = q`nτ. (2.8)

A recursive expression for ˆ̀
n+1 can be found in Proposition B.1.

The farmer’s best response is divided into three decisions per period, two production

decisions (yn, `dn), and one consumption decision (cn). Interestingly, the production deci-

sions do not depend on the cash position in period n, xn. This result can be shown to hold

for any concave increasing production function and any convex decreasing interest payment

function.

The land expansion decision `dn follows a base-stock policy form, by which the farmers

expand up to a land target ˆ̀
n+1 (and do not expand at all if this target value is below the

current amount of land `n). This target ˆ̀
n+1 is defined in Proposition B.1 in the Appendix

as the land amount that equates the expected marginal future value of land to the marginal

land expansion cost d. It can be shown that if we assume the lag until new land becomes

productive to be T (i.e., `n+1 = `n + `d(n+1)−T ), then the optimal land expansion in period

n would be `d∗n = (ˆ̀
n+T − `n −

∑T−1
i=1 `dn−i), where the target land ˆ̀

n+T would equate the

marginal deforestation cost d to the expectation in period n of the marginal value of land

in all periods following the (n+ T )-th period.

The optimal production-expenditure rate decision leads to a total production function

that increases with the price pn. Additionally, we show in 2.3 that the optimal production-

expenditure decreases with the marginal cost of intensification q and with the variance

of the production cost shock, σ2. This latter relationship can be explained through the
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high interest payments the farmers face: higher levels of risk will induce lower levels of

production intensification. This is consistent with the literature on technological adoption

and intensification (see, e.g., Joffre et al. (2018)).

The consumption decisions imply the farmer saves in expectation exactly up to g∗n,

which is increasing in the variance of the production cost shocks. This is consistent with

the empirical findings on agricultural risks and how they affect a farmer’s ability to obtain

food security and higher welfare levels (see e.g., Wolgin 1975). This is even more relevant

than ever when facing higher climate-change related risk (Harvey et al. 2014).

Theorem 2.2 shows how the farmer’s value function changes with the total amount of

land, the intensification cost, the expected cost of production, and the variation in this cost

of production.

Theorem 2.2 The farmer’s value function Jn(xn, `n, pn) is increasing in `n, pn, and xn,

and decreasing in q, k, and σ2, for every n ∈ {1, . . . , N + 1}.

As expected, the farmer’s welfare is increasing in the total amount of land, the market

price, and the cash position, and decreasing in the cost of both the cost of intensification

and the expected cost of production. Moreover, the higher the variation of production costs,

the lower the total welfare.

In Theorem 2.3 we show how the optimal production-expenditure levels change as a

function of the amount of land, the cost of intensification, and the variance of the production

cost shocks.

Theorem 2.3 The farmer’s optimal production-expenditure level y∗n(`n, pn) is decreasing

in σ2, `n, q, α, and k.

We show that the production-expenditure exerted is decreasing in the production risk.

High variability in production costs generate reduced consumption as well as a reduction

in the total optimal production. The more subtle insight we show in Theorem 2.3 is that
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the production-expenditure level is decreasing in the amount of land: under liquidity con-

straints, the higher the amount of land, the less farmers can invest in increasing the pro-

ductivity per unit of land. Increased intensification cost q would, as well, decrease the total

production-expenditure rate, which is in line with all the literature on incentivizing technol-

ogy adoptions and better farming processes, and forms the basis of most of the input-driven

incentives and technological training incentives applied widely in practice (see § 2.1.3 for

an account of several such incentive programs).

Theorem 2.4 shows how the land-expansion decisions are affected by the expected pro-

duction cost shock, its associated variance, and the interest rate.

Theorem 2.4 The farmer’s equilibrium deforestation decision `d∗n is decreasing in k, σ2,

and α.

This result shows one of the key problems of most incentives schemes with the dual aim

of increasing farmer welfare and decreasing land-expansion: most factors that improve the

former increase the latter. This phenomenon has been described in the Economics literature

as the Jevon’s paradox, and indeed occurs frequently in practice (see Alcott 2005). In our

model, we can see that decreasing the expected cost of production k or the interest rate α

imply an increase in deforestation pressure. Additionally, we can see that at higher levels

of variability, the deforestation pressure is reduced. Not only does high variability of costs

induce lower intensification, but it reduces as well the amount of land cleared. The rationale

for why this happens is similar to before: at higher variability of production costs and faced

with high interest rates for debt, farmers are less prone to increase their total productive

land.

In Theorem 2.5 we show that for low enough cost q, the land-expansion pressure is

actually increasing in q.

Theorem 2.5 There exist positive thresholds q̃Ln (`n) ≤ q̃Hn (`n) such that farmer f’s equilib-

rium deforestation decision `d∗n is increasing in q for q ≤ q̃Ln (`n), and decreasing in q for

q ≥ q̃Hn (`n). Moreover, q̃Ln (`n) and q̃Hn (`n) are increasing in σ2, α, and `n.
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This surprising result provides a clear insight into the contradicting empirical observa-

tions on how intensification can affect deforestation (see §2.1.2 and § 2.1.3). While many

subsidy programs that reduced the cost of intensification did reduce the total deforestation,

many other have had the exact opposite effect. We demonstrate here that indeed the effect

can go in both directions, depending on context specific parameters. This threshold be-

havior is driven by the combination of the liquidity constraint and the variable production

costs. In particular, when reducing the cost of intensification, there are two opposing forces

acting on the deforestation pressure. One the one hand, reducing q reduces the intensi-

fication cost and increases the equilibrium production-expenditure y∗ (see Theorem 2.3),

both of which makes each unit of land more valuable. On the other hand, the increased

intensification implies that each unit of land will produce a higher volume, which leads to a

higher variability in the production costs. Under the liquidity constraints, this increase in

total variability will induce a downward pressure on land expansion. The balance between

these two forces is characterized by the threshold behavior described in Theorem 2.5: when

the variability in production costs is high, q̃Ln (`n) will be high, and deforestation pressure

will decrease when decreasing q for any q smaller than q̃Ln (`n), but when the variability

in production costs is low compared to q, q will be above q̃Hn (`n), and decreasing q will

incentivize deforestation.

Interestingly, Theorem 2.5 shows that the reducing the intensification cost q would not

only cause farmers that are “better off” to reduce deforestation. Because q̃Ln and q̃Hn are

increasing in both `n, and α, then both farmers with an already large productive land, and

farmers that are more liquidity constrained would reduce deforestation when their cost of

intensification is reduced.

The threshold result in Theorem 2.5, together with the insight on the role that pro-

duction cost variability and liquidity constraints play, provide an explanation to the highly

debated question of whether intensification causes or prevents deforestation (see §2.1.2). To

the best of our knowledge this is the first result that presents the level of production cost

risk paired with the liquidity constraints as causes for the different answers to this question
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observed in practice.

2.3.1 Discussion on different incentive schemes

From the results above, we can surmise the following insight.

Insight 2.1 The only non-conditional welfare improving interventions that can decrease

deforestation pressure are those that decrease the intensification cost when this cost is low

enough.

This insight is a direct corollary of Theorems 2.2, 2.4, and 2.5, as any reduction of

either the mean of the random production cost or the variance would indeed improve the

welfare of the farmer, but would as well lead to an increase in the total land cleared. In

contrast, when q, the intensification cost is lower than the threshold q̃Ln , lowering this cost

induces both an increase of welfare and an increase of the protected forest. This insight is

validated by the empirical evidence that links the reduction in transportation costs with

the increase of deforestation (see Geist and Lambin (2002) for a global analysis of this,

and Bruun et al. (2017) for an example of how the improved road conditions facilitated

the deforestation of the highlands in northern Thailand). This reenforces the need for

careful implementation of policies, because in most cases, well intentioned welfare-improving

policies can have devastating effects on the preservation of natural forests if not made

conditional on conservation goals.

2.4 Concluding Remarks

We have introduced a dynamic model of farmer operation that allowed us to study the effect

of intensification promotion on deforestation. In particular, we found that there exists a non

monotonic relationship between the intensification cost and the rate of deforestation: for

low enough intensification costs, decreasing the cost can reduce deforestation, while for large

enough costs the opposite is true. This adds a nuanced explanation to the already existing
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theories that try to explain the, empirically observed, varied relationship between intensi-

fication and deforestation. In particular, our main result is driven by our consideration of

random production cost shocks and liquidity constrained farmers.

Our results reinforce the importance of careful study of each context before any policy

implementation. Implementing a policy of intensification promotion in a setting where the

average size of plots is small, the variability in costs is low, and the intensification costs

are already high, may have negative effects on the forest protection. At the same time,

implementing the same policy in a region where there is high variability of costs, land

sizes are not too small, and the cost of intensification is not too high may actually reduce

deforestation.

Finally, we believe these findings motivate future work that could empirically validate

our results. Namely, showing that in settings where the reduction of the cost of inten-

sification led to higher deforestation, the variability in costs was low enough to put the

intensification cost above the theoretical threshold. And conversely, that in settings where

intensification reduced land-clearing, that the intensification cost was indeed below the

threshold. Estimating these thresholds in practice would require a careful collection of

farm-level data, in order to understand the sources of uncertainty in the costs, as well as

estimating the model’s parameters.
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Appendices to Chapter 1

A.1 Proofs and Examples

For ease of notation, let F* def
= arg max

A∈F

n∑
i=1

γiv(Ai), and F*
G

def
= arg max

B∈FG

n∑
i=1

γiv(Bi).

We now prove Propositions 1.1 and 1.2.

Proof of Proposition 1.1. If we have that FG = arg max
A∈F

g(A), then ifA ∈ FG, andB ∈ F

satisfy that v(Bi) ≥ v(Ai), for each i, then we know by the statement of the Proposition that

g(B) ≥ g(A), which implies that B ∈ arg max
A∈F

g(A) = FG, proving that Assumption 1.2

holds. On the other hand, if we assume that Assumption 1.2 holds for a certain FG, then

let us consider the function g : F → R, defined by g(A) = 1FG
(A), that takes the value

1 when A ∈ FG, and 0 otherwise. Thus, by definition FG = arg max
A∈F

g(A). Moreover, if

g(A) = 1, and B ∈ F is such that v(Bi) ≥ v(Ai), for all 1 ≤ i ≤ n, then, because FG

satisfies Assumption 1.2, B ∈ FG, which implies that g(B) = 1 ≥ g(A). Therefore, g(·)

satisfies the condition of Proposition 1.1, which concludes the proof.

Proof of Proposition 1.2 It is clear that if we have a union of income guarantees, then As-

sumption 1.2 is satisfied, thus, we only need to prove that any FG that satisfies this assump-

tion can be expressed as such union. For this, take any FG that satisfies Assumption 1.2,

and consider for each A ∈ FG, the guarantee FG
A = {B ∈ F | v(Bi) ≥ v(Ai),∀ i ∈ N}.

57
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We claim than ∪A∈FG
FG

A = FG. Clearly FG ⊆ ∪A∈FG
FG

A, because each A ∈ FG
A.

Moreover, if C ∈ ∪A∈FG
FG

A, then there exists A ∈ FG, such that v(Ci) ≥ v(Ai), ∀ i ∈ N ,

but then by Assumption 1.2, C ∈ FG, which concludes the proof.

Now we will prove Theorems 1.1 and 1.2. We begin by proving an optimality condition

that any allocations A ∈ F*and B ∈ F*
G must satisfy.

Lemma A.1 For any fixed F and FG, let A ∈ F*, and B ∈ F*
G, then

v(Ai \ (B1 ∪ . . . ∪Bn)) ≤ v(Bj \Ai), ∀ i, j ∈ N (A.1)

Proof. Assume by contradiction that v(Ai \ (B1 ∪ . . . ∪ Bn)) > v(Bj \ Ai), for some i, j.

Thus, take B′j = (Bj ∩ Ai) ∪ (Ai \ (B1 ∪ . . . ∪ Bn)). Then, v(B′j) = v(Bj ∩ Ai) + v(Ai \

(B1 ∪ . . . ∪ Bn)) > v(Bj ∩ Ai) + v(Bj \ Ai) = v(Bj). Additionally, B′j ⊆ Ai, implying

by Assumption 1.1-(iii) that (B′j , A−i) is a feasible allocation. Hence, by Assumption 1.1-

(ii), (B′j , A−j) is a also a feasible allocation and by definition of B′j , we have as well that

B′j∩Bi = ∅, for any i 6= j, which implies by Assumption 1.1-(iv) that (B1, . . . , B
′
j , . . . , Bn) ∈

F, where Bj is replaced by B′j . But then, by Assumption 1.2 on FG, we must have that

(B1, . . . , B
′
j , . . . , Bn) ∈ FG. This implies a contradiction, because (B1, . . . , Bn) ∈ F*

G, but∑n
i=1 γiv(Bi) <

∑j−1
i=1 γiv(Bi) + γjv(B′j) +

∑n
i=j+1 γiv(Bi).

Using Lemma A.1, we now prove Theorem 1.1, that shows an upper bound of Lγ(F,FG).

Proof of Theorem 1.1. Given any F and FG, we know that any allocations (A1, . . . , An) ∈

F* and (B1, . . . , Bn) ∈ F*
G must satisfy the conditions imposed by Lemma A.1. Let us then

consider the following set of scalar variables:

xi = v(Ai \ ∪nk=1Bk), for i ∈ N

yi = v(Bi \ ∪nk=1Ak), for i ∈ N

wij = v(Ai ∩Bj) for i, j ∈ N



www.manaraa.com

APPENDIX A. APPENDICES TO CHAPTER 1 59

Notice that xi = v(Ai \ ∪nk=1Bk), and that the following equalities hold due to the

definition of v(S) for S ⊆ D and the fact that each Ai ∩Aj = ∅, for every i, j ∈ N :

yj +

n∑
k=1

wkj − wij = v(Bj \ ∪nk=1Ak) +

n∑
k=1
k 6=i

v(Ai ∩Bk)

= v(Bj \ ∪nk=1Ak) + v(∪nk=1
k 6=i

Ai ∩Bk)

= v(Bj \Ai)

Hence, we can rewrite the inequalities in (A.1)as:

xi ≤
n∑
k=1

wkj − wij + yj , for i, j ∈ N. (A.2)

Additionally, because Bi ∪ Bj = ∅ if i 6= j, we can express v(Ai) in terms of the scalar

variables xi and wij , as the following equalities show:

v(Ai) = v((Ai \ ∪nk=1Bk) ∪ (∪nk=1Ai ∩Bk))

= v(Ai \ ∪nk=1Bk) +

n∑
j=1

v(Ai ∩Bj)

= xi +

n∑
j=1

wij .

Equivalently, we can show that v(Bj) = yj +

n∑
i=1

wij . Using these two reformulations of

v(Ai) and v(Bj), we can write the expression in (1.1) that defines Lγ(F,FG) as:

n∑
i=1

γixi −
n∑
i=1

γiyi +

n∑
i=1

n∑
j=1

wij(γi − γj)

n∑
i=1

γixi +
n∑
i=1

n∑
j=1

wijγi

(A.3)

Notice that written in this way it is clear that Lγ(F,FG) is a Fractional Linear function
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of variables x, y, and w. Because for any F and FG, the inequalities of (A.2) must hold,

then, we can find an upper bound on Lγ(F,FG) for any F and FG, given γ, by solving the

following Fractional Linear Program:

Maximize

n∑
i=1

γixi −
n∑
i=1

γiyi +
n∑
i=1

n∑
j=1

wij(γi − γj)

n∑
i=1

γixi +

n∑
i=1

n∑
j=1

wijγi

subj. to xi + wij −
n∑
k=1

wkj − yj ≤ 0 for i, j ∈ N

xi ≥ 0 for i ∈ N

yi ≥ 0 for i ∈ N

wij ≥ 0 for i, j ∈ N

(A.4)

Given that the constraints in the maximization problem above are all homogeneous, we

can rewrite this problem, by scaling all the variables, into the following equivalent linear

program:

Maximize

n∑
i=1

γixi −
n∑
i=1

γiyi +

n∑
i=1

n∑
j=1

wij(γi − γj)

subj. to
n∑
i=1

γixi +
n∑
i=1

n∑
j=1

wijγi = 1

xi + wij −
n∑
k=1

wkj − yj ≤ 0 for i, j ∈ N

xi ≥ 0 for i ∈ N

yi ≥ 0 for i ∈ N

wij ≥ 0 for i, j ∈ N.

(A.5)

The optimization problem in (A.5) is a linear program with variables x, y, and w, and

an objective function bounded above by 1. Thus, we know that strong duality must hold

and we can find the desired upper bound by studying the dual linear program:
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Minimize s

subj. to sγi +
n∑
j=1

λij ≥ γi for i ∈ N

γj − γk + sγk −
n∑
i=1
i 6=k

λij ≥ 0 for k, j ∈ N

γj ≥
n∑
i=1

λij for j ∈ N

λij ≥ 0 for i, j ∈ N.

(A.6)

Problem (A.6) in turn can be rewritten as:

Minimize max


1− 1

γi

n∑
j=1

λij


n

i=1

,

 1
γk

 n∑
i=1
i 6=k

λij + γk − γj



n

k,j=1


subj. to γj ≥

n∑
i=1

λij for j ∈ N

λij ≥ 0 for i, j ∈ N
(A.7)

Let us define f(γ) : [γmin, γmax]n → [0, 1], as the optimal value of the dual problem

(A.7). Now we can see that each term that appears in the objective of problem (A.7) is

a quasiconvex function of both γ and λ, thus, the objective itself is quasiconvex in these

variables, because it is the finite maximization of quasiconvex functions. Moreover, the

feasible region of problem (A.7) is convex in γ and λ, which means that the function f(γ)

must be quasiconvex in γ, because it is the minimization of a quasiconvex function over a

convex set. But then, if we wish to find max
γ∈[γmin,γmax]n

f(γ), then we need only to look at the

extreme points of the hypercube [γmin, γmax]n (see Bertsekas et al. (2003) for a proof of this

result).

Now, as we prove in Lemma A.2, if we take the instance where the first n0 values

of γ are γmax, and the rest are γmin, for n0 ∈ N , we can see that the optimal value is
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max
{
δ, n−1
n+n0+(1−δ)(n−n0)−1

}
. But, notice that this is a decreasing function of n0, implying

that the instance of γ that maximizes the solution to problem (A.4) is when n0 = 1. In

this case, we recover max
{
δ, n−1
n+(1−δ)(n−1)

}
. Which proves the theorem.

Lemma A.2 The optimal value of the linear program (A.5), when γi = γmax for all i ∈

{1, . . . , n0}, and γi = γmin for all i ∈ {n0 + 1, . . . , n}, for all n0 ∈ {1, . . . , n} is

max

{
δ,

n− 1

n+ n0 + (1− δ)(n− n0)− 1

}
,

where δ = γmax−γmin
γmax

.

Proof. Notice that the linear program (A.6) is a dual of the linear program (A.5). Thus,

we will produce a primal and a dual feasible instance, both attaining the proposed optimal

value, which will show that it is indeed the optimal value. For ease of notation, we will

define X = n−1
n+n0+(1−δ)(n−n0)−1 .

For this, we consider first the case where δ > X.

In this case, consider the following primal feasible point:

xi = yi = 0, ∀i ∈ N, w1,n0+1 =
1

γmax
, wij = 0, ∀(i, j) 6= (1, n0 + 1)

By simply replacing this values in problem (A.5), we can see that the objective of δ is

achieved.

For the dual problem, let us consider the following feasible point:

s = δ, λij = 0 for j ∈ {(n0 + 1), . . . , n}

λij =
γmin

n0
for i, j ∈ {1, . . . , n0}, λij =

γ2
min

γmaxn0
for i ∈ {(n0+1), . . . , n} and j ∈ {1, . . . , n0}.

By evaluating the dual problem in this specific point, we can see that it achieves an

objective value of δ, and it is feasible only when δ ≥ X.
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In the case when X ≥ δ, we take the following primal feasible solution:

x1 = 0, xi =
X

(n− 1)γmax
, ∀ i 6= 1, yi = 0,∀ i ∈ N

w1j =
X

(n− 1)γmax
,∀ j ∈ N, wij = 0,∀ i ∈ {2, . . . , n}, j ∈ N.

Simple algebra will show that this solution is primal feasible and achieves the objective

value of X.

Finally, we take the following dual solution:

s = X, λij =
γmax(X − δ)

(n− 1)
, ∀ j ∈ {(n0 + 1), . . . , n}, i ∈ N.

λij =
γmax
n0

(
1− (n− n0)(X − δ)

(n− 1)
−X

)
,∀ i, j ∈ {1, . . . , n0}

λij =
1

n0

(
γmin(1−X)− γmax(n− n0)(X − δ)

(n− 1)

)
,∀ i ∈ {(n0 + 1), . . . , n}, j ∈ {1, . . . , n0}.

With some algebra, this solution can be seen to be dual feasible when X ≥ δ, and it

clearly achieves an objective values of X because s = X.

Hence, both when X ≥ δ, and when the converse occurs, we have produced dual and

primal feasible solutions that achieve the objective value of max{X, δ}, proving that this

must indeed be the optimal value.

Now that we have proved Theorem 1.1, we proceed to prove Theorem 1.2. For this,

we need only to show that we can asymptotically approximate the upper bound proven in

Theorem 1.1.

Proof of Theorem 1.2 We need only to prove that there exists instances of F, FG,

and γ such that Lγ(F,FG) achieves the values in (1.6)-(1.7). For this, we will generalize

Instances 1.1 and 1.2, for n agents.

We begin by considering an instance family that achieves Lγ(F,FG) = δ, for any n and

δ.
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Instance A.1 Take D = {d1}, such that v(d1) = 1, any n, and γ1 = γmax, γi = γmin ≤

γmax for all i ∈ {2, . . . , n}. Given this D with only one job, consider F = {A,B}, where

A1 = {d1}, Ai = ∅ for all i ∈ {2, . . . , n}, and B1 = ∅, B2 = {d1}, and Bi = ∅ for all

i ∈ {3, . . . , n}. Finally, if we take FG = {B}, then the only efficient allocations would be

A, that gives a value of γmax, while, by definition, the only allocation in FG would be B,

which implies that Lγ(F,FG) = γmax−γmin
γmax

= δ.

Now we present a family of instances that have Lγ(F,FG) = n−1
n+(1−δ)(n−1) − ε, for any

ε > 0, where FG = FmM
G is the restriction to only Max-Min fair allocations. In Instance 1.2

we presented an instance for two agents given by three jobs that had the following properties:

two of the jobs could be fulfilled by any single provider, while one of the jobs overlapped

with all the other jobs and thus could only be assigned by itself to a provider. We will

generalize these properties now to 2n− 1 jobs.

Instance A.2 Given any n, let D = {d1, . . . , dn, . . . , d2n−1}, such that v(di) = 1, for all

i ∈ {1, . . . , n}, and v(dj) = 1−κ, for j ∈ {n+ 1, . . . , 2n− 1}. Let γ1 = γmax and γi = γmin,

for all i ∈ {2, . . . , n}. A subset A ⊆ D can be assigned to a single provider if either dj /∈ A,

for all j ∈ {n + 1, . . . , 2n − 1}, or A = {di} for some i ∈ {n + 1, . . . , 2n − 1}. Let F be

formed by all possible disjoint combinations of such subsets of D. Let p : P(D) → R be a

strict monotonic payment function satisfying (1.3) and

v(S) > v(T )⇒ p(S) > p(T ),∀S, T ∈ P(D).

Let FmM
G (p,N) be the associated Max-Min fair restriction, as described in (1.4).

Given this instance, the only efficient allocation would be A with A1 = {d1, . . . , dn},

Ai = {dn+i−1} for 2 ≤ i ≤ n. That is, we assign all of the first n jobs to one provider

and distribute the remaining jobs between the remaining providers. Moreover, the only

allocation in FmM
G (modulo symmetries) is given by B with Bi = {di}, for 1 ≤ i ≤ n. As in

the n = 2 case, this is due to smaller 1 − κ value generated by the last n − 1 jobs and the

monotonicity of the payment function p(). Hence, this instance generates a loss Lγ(F,FG) =
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(nγmax+γmin(n−1)(1−κ))−(γmax+(n−1)γmin)
nγmax+γmin(n−1)(1−κ) = (n−1)γmax−κγmin(n−1)

nγmax+γmin(n−1)(1−κ) →κ→0

n−1
n+(1−δ)(n−1) . Therefore,

for any ε > 0, there exists a κ small enough such that Lγ(F,FG) = n−1
n+(1−δ)(n−1) − ε.

Instance A.3 Given any n, and t, positive integers, let D = ∪tk=1C
k ∪ S, where Ck =

{dk2, . . . , dkn}, and S = {ds1, . . . , dsn(t+1)}. Let as well γ1 = γmax ≥ γmin = γi, for all i ∈

{2, . . . , n}. A subset of jobs A ⊂ D can be assigned to a single provider if either A ∩

∪tk=1C
k = ∅ or |(A ∩ Ck)| ≤ 1, for each k ∈ {1, . . . , t} and A ∩ S = ∅. Let F be formed by

all possible disjoint combinations of such subsets of D. Let, as well v(d) = 1, for all d ∈ D,

and p : P(D)→ R be a strict monotonic payment function satisfying both (1.3) and

v(S) > v(T )⇒ p(S) > p(T ), ∀S, T ∈ P(D).

Let FmM
G (p,N) be the associated Max-Min fair restriction, as described in (1.4).

Given this instance, the only efficient allocation (modulo symmetries) would be A, such

that A1 = S, Ai = {d1
i , d

2
i , . . . , d

t
i}, for all i ∈ {2, . . . , n}. That is, we assign all the jobs

in the set S to the provider that generates the highest value, and we assign one job of each

Ck to the rest of the providers, for a total of t jobs. Moreover, the only allocations in FmM
G

are of the form B, such that Bi ⊆ S, and |Bi| = t+ 1, for each i ∈ N . In other words, we

divide the (t+ 1)n jobs of S among all the providers equally. In the efficient allocation all

providers, except for the first one, are being allocated exactly t jobs, while in any Max-Min

fair allocation, all providers are being allocated exactly t+ 1 jobs. Hence, the loss generated

by this instance, that comes from the fact that none of the jobs in ∪tk=1C
k are allocated

for any allocation in FmM
G , is (t+1)nγmax+t(n−1)γmin−(t+1)(γmax+(n−1)γmin)

(t+1)nγmax+t(n−1)γmin
= t(n−1)+δ(n−1)

t(n+(n−1)(1−δ))+n .

Therefore, for any ε > 0, there exists a t large enough such that Lγ(F,FG) = n−1
n+(1−δ)(n−1)−

ε.

To better visualize the structure of Instances A.2 and A.3, we can imagine a graph on

the elements of D, where a set of jobs can be assigned together only when there is no edge

between any pair of the corresponding vertices. Thus, in the case of Instance A.2, there
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Figure A.1: Feasibility graphs for Instance A.2 (left), when n is 3, and Instance A.3 (right),
when n is 3 and t is 1.

would be no edges between any pair of the first n vertices, while every pair of the last n− 1

vertices would be joined by an edge. Finally, every vertex of the last n− 1 will be adjacent

to all of the first n vertices. An example for 3 providers of this graph can be seen in Figure

A.1. These types of graphs are known as complete split graphs (see Le and Peng (2015)).

Similarly, in the case of Instance A.3, there would be no edges between any pair of vertices

in the set S, while each pair of vertices in the same Ck would be connected by an edge.

Moreover, every vertex in S would be connected to every vertex in each of the Ck. An

example for 3 providers, and t = 1 can be seen in Figure A.1. An allocation of the jobs can

be seen as a covering of this graph by independent sets (sets of vertices without any edge

joining two vertices of the set).

The family of Instances A.1, A.2, and A.3 prove that Lγ(F,FG) can be taken as close

to max
{
δ, n−1
n+(1−δ)(n−1)

}
as desired. This concludes the proof of Theorem 1.2.

We now present Instance A.4, that shows how when we relax Assumption 1.1 (ii), we

can achieve a loss that grows asymptotically to 100% with the number of providers.

Instance A.4 Consider n = 2k−1, for any integer k > 0, D = {d1
1, . . . , d

1
k, . . . , d

k
1, . . . , d

k
k},
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and

F =
{
A |Ai ⊆ {di1, . . . , dik}, for i ∈ {1, . . . , k},

Aj ⊆ {d1
j−k, . . . , d

k
j−k}, for j ∈ {k + 1, . . . , 2k − 1}

}
.

Let v(d) = 1
k , for d ∈ D, let γi = 1 for i ∈ {1, . . . , k}, and γj = 1

k for j ∈ {k+1, . . . , 2k−

1}, and let pi(Ai) = γi
∑
d∈Ai

v(d). Then

Lγ(F,FmM
G (p,N)) = 1− 4n

(n+ 1)2
.

Where FmM
G is the allocations that satisfy Max-Min fairness, as defined in (1.4).

To see this, notice that the only Max-Min fair allocation, that would leave each provider

with a p(Bi) = 1
k , for i ∈ N , is (modulo permutations) B, such that Bi = {dik}, for

i ∈ {1, . . . , k}, and Bj = {d1
j−k, . . . , d

k
j−k}, for j ∈ {j + 1, . . . , 2k − 1}. This allocation

would lead to a total value of 2k−1
k . On the other hand, the value-maximizing allocation

would only allocate jobs to the first k providers, by taking A such that Ai = {di1, . . . , dik},

for i ∈ {1, . . . , k}. This would lead to a total value generated of exactly k, which would

imply that

Lγ(F,FmM
G (p,N)) =

k − 2k−1
k

k

= 1− 4n

(n+ 1)2
.

Notice finally that this instance does not satisfy Assumption 1.1 (ii), because the first

k providers can complete any subset of trips from {di1, . . . , dik}, for provider i ∈ {1, . . . , k},

but the last k − 1 providers can only perform subsets of {d1
j−k, . . . , d

k
j−k}, for provider j in

{k,. . . , 2k-1}. Therefore, almost any permutation of a feasible allocation would lead to an

unfeasible allocation.
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We will now prove Propositions 1.7 to 1.6 from §1.4.

Proof of Proposition 1.7. In order to prove this proposition, we will first formally define

the set of guarantees Fc
G, as any subset of Fc, that satisfies Assumption 1.2, replacing

in the definition of the assumption F by Fc, and using the generalized notion of v(Ci) for

C ∈ Fc, described in §1.4. In particular, we extend the notion of uniform income guarantees

under monotonic payment functions: given p(·), a monotonic payment function, we take

Fc
G = {C ∈ Fc | p(Ci) ≥ τ, for i ∈ N}. As in §1.2.3, it is easy to see that these guarantees

satisfy the extended version of Assumption 1.2. Now, we will prove that given any uniform

income guarantee, Lγ(Fc,Fc
G) = 0.

Consider any allocation A ∈ F*. We know that any permutation Aσ of A is as well in

F, hence, take C ∈ Fc, such that C = ({θσ}σ∈Sn , {Aσ}σ∈Sn), where Sn is the symmetric

group of all permutations of N , θσ = 1
n! , and Aσ is a specific permutation of A. Hence,

v(Ci) = v(Cj) =
n∑
i=1

1

n
v(Ai), for each i 6= j ∈ N . This implies that C must be in any non

empty uniform income guarantee. To see this, let us assume by contradiction that there is

a nonempty Fc
G such that C /∈ Fc

G. Without loss of generality, because they both induce

the same ordering on the subsets of D, we will assume that p(·) = v(·). Hence, C /∈ Fc
G

implies that the corresponding income guarantee, τ is greater than
n∑
i=1

1

n
v(Ai). But then

there must exist at least one B ∈ Fc such that v(Bi) ≥ τ >
n∑
i=1

1

n
v(Ai), for each Bi, which

implies that
n∑
i=1

v(Ai) <
n∑
i=1

v(Bi) =
n∑
i=1

k∑
j=1

θjv(Bj
i ) =

k∑
j=1

θj

n∑
i=1

v(Bj
i ) ≤

k
max
j=1

n∑
i=1

v(Bj
i ).

But then, there exists an allocation Bj ∈ F, that achieves a higher total value than A ∈ F*,

which leads to a contradiction and proves the proposition.

Proof of Proposition 1.3.

Let k̂ =
n∑
i=1

ki, and let us assume that D = {d1, . . . , dm}, where jobs are ordered

decreasingly in v(di), then, for any allocation A ∈ F*,
n∑
i=1

v(Ai) =
k̂∑
j=1

v(dj).

To see this notice that the total amount of jobs that can be allocated is k̂, and thus,
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if the total value generated in any A ∈ F* were less than γmax

k̂∑
j=1

v(dj), then take the job

with smallest intrinsic value being allocated, and replace it by the job with highest intrinsic

value in {d1, . . . , dk̂} \ (∪ni=1Ai). This replacement would generate a feasible allocation, and

would improve the total value generated, which leads to a contradiction because A ∈ F*.

Now to prove that Lγ(F,FG) = 0, we will proceed in two steps, first, we will show

that any allocation B ∈ F can be Pareto dominated, in the sense of Assumption 1.2, by

an allocation A inF, that uses only jobs in {d1, . . . , dk̂}, the second is that any allocation

C ∈ A, that uses only jobs in {d1, . . . , dk̂} can be Pareto dominated by an allocation C inF,

that uses all jobs in {d1, . . . , dk̂}. By transitivity of the Pareto dominance, this will imply

that any allocation can be Pareto dominated by an allocation that uses all elements in

{d1, . . . , dk̂}, and therefore is in F*, which, by Assumption 1.2, will imply that there is an

element of F* in FG, therefore Lγ(F,FG) = 0.

Take any allocation B ∈ A, if (∪ni=1Bi) \ {d1, . . . , dk̂} = ∅, then B allocates only

elements of {d1, . . . , dk̂}. Otherwise, consider A such that we replace in B every job in

(∪ni=1Bi) \ {d1, . . . , dk̂} by an element in {d1, . . . , dk̂} \ (∪ni=1Ai). Because every job we

replaced must have a lower intrinsic value than any job in the first k̂, then we know that

v(Bi) ≤ v(Ai), for each i ∈ N .

Now, assume we have a A ∈ F, such that only jobs in {d1, . . . , dk̂} are allocated, then

if there are any jobs in the first k̂ not allocated in C, this means that there is at least one

provider i such that |Ai| < ki. Consider then the allocation C ∈ F, such that we add jobs

from {d1, . . . , dk̂} to A, until all |Ai| = ki. This allocation C Pareto dominates allocation

A, and uses exactly all elements in {d1, . . . , dk̂}. Hence, as mentioned above, this proves

that Lγ(F,FG) = 0, for any FG, satisfying Assumption 1.2.

Proof of Proposition 1.4.

We begin by proving (i). Without loss of generality, we will normalize v(d) = 1, for all

d ∈ D. To show that we have zero loss under any uniform income guarantee FG, we will show

that when |D| < n, maxA∈F minni=1 v(Ai) = 0, and when |D| ≥ n, maxA∈F minni=1 v(Ai) = 1.
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When |D| < n, any allocation A ∈ F will necessarily have an Ai = ∅, which implies that

maxA∈F minni=1 v(Ai) = 0. On the other hand, if |D| ≥ n, then for any A ∈ F, each Ai is

either {dCj }, for some dCj ∈ C, or Ai ⊆ S. In the first case, v(Ai) = 1, in the second case,

v(Ai) = |Ai|. Thus, the only way of having minni=1 v(Ai) > 1, would be if each Ai ⊆ S,

and |Ai| ≥ 2, for all i ∈ N , but this implies that |S| ≥ 2n, which in turn contradicts our

hypothesis. Therefore, maxA∈F minni=1 v(Ai) = 1.

In both cases outlined above, F* will always contain an allocationA, such that minni=1 v(Ai) =

maxB∈F minni=1 v(Bi), which implies that Lγ(F,FG) = 0, for any uniform income guarantee

under monotonic payment functions, FG.

Now, to show (ii), we simply observe that Instance 1.5 is a generalized form of In-

stance 1.2, and that by taking v(d) = 1 − κ, for all d ∈ C, v(d) = 1, for all d ∈ S, and

|C| = n − 1, |S| = n, we obtain exactly Instance 1.2, when n = 2, and Instance A.2 when

n ≥ 2.

We now describe Example A.1, that shows how the dependency of the loss on the

variance of the values described in Example 1.1 extends to the n provider case.

Example A.1 Consider a variant of Instance A.2, where the κ term is taken to be a

random variable, κ ∼ U [−∆
2 ,

∆
2 ], and γmin = γmax = 1. Thus, the value vi = v(di) =

1− κ ∼ U [1− ∆
2 , 1 + ∆

2 ], for each i ∈ {n+ 1, . . . , 2n− 1}. Hence, if we take the expectation

of the loss, with respect to the error κ, we get

Eκ(Lγ(F,FG)) =

∫ min{1,∆
2
}

0

1

∆

(n− 1)(1− κ)

n+ (n− 1)(1− κ)
dκ

=
1

∆

( n

n− 1
log((n− 1) min{1, ∆

2
} − (2n− 1))

+ min{1, ∆

2
} − n

n− 1
log(2n− 1)

)
:= g(∆).

As in Example 1.1, it can be seen that g(∆) is decreasing in ∆, which implies that it is

decreasing in the variance of the values, for higher variance, there is a lower expected loss.
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Proof of Proposition 1.5. We will first prove that if n = 1 and γmin = γmax, then

Lγ(F,FG) = 0, for any set of allocations with guarantees, FG. To show this, we simply

observe that due to Assumption 1.2, any A ∈ F*, must also satisfy A ∈ FG, because clearly

for any B ∈ FG, v(B1) ≤ v(A1).

Now, we will show that the loss is zero when n ≥ |D|, for any set of allocations with

guarantees. For this, we assume without loss of generality that it is always feasible to

allocate at least one job to any specific provider (if not, then there is a job that cannot

be completed by any provider, and we could then simply ignore it). Hence, we claim that

maxA∈F
∑
i

v(Ai) =
∑
d∈D

v(d). This is because when n ≥ |D|, we can always allocate all

jobs by allocating one job per provider to the first |D| providers.

Now, we claim that in F*
G there exists an allocation B, such that D ⊆ ∪iBi. To see

why this is, assume to the contrary that no such allocation exists. Then, take any A ∈ F*
G,

there exists thus d ∈ D such that d /∈ ∪iAi. Moreover, because |D| ≤ n, then there exists

a provider i, such that Ai = ∅. Hence, simply take A′ such that A′j = Aj , for j 6= i,

and A′i = {d}. This leads to a contradiction, because by Assumption 1.2, A′ ∈ FG, and∑
i∈N

v(A′i) >
∑
i∈N

v(Ai), but A ∈ F*
G. Therefore, there exists an allocation B ∈ F*

G, such

that D ⊆ ∪iBi, and thus
∑
i∈N

v(Bi) =
∑
d∈D

v(d), which implies that Lγ(F,FG) = 0, for any

set of allocations with guarantees FG.

Proof of Proposition 1.6. Without loss of generality, we can assume that all intrinsic

values are 1, that is, v(d) = 1, for each d ∈ D. Now, because |D| < 2n, and because we

can always allocate only one job to any provider, then maxA∈F mini∈N v(Ai) = 1. Hence,

any uniform income-guarantee can at most guarantee the payment produced by exactly one

job. Therefore, because there always exists an allocation in F* that allocates at least one

job to each provider, we conclude that Lγ(F,FG) = 0, under any uniform income-guarantee

under monotonic payment functions.
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A.2 Numerical Analysis of Synthetic and Real-world Data

In this section we provide the details of the numerical analysis we discuss in §1.5. The

objective of this analysis is to demonstrate both the magnitude of the relative loss and

the different drivers of this loss in a particular setting covered by our general theoretical

analysis.

Instances generated with real-world data. We used the publicly available dataset

provided by NYC Taxis and Limousine Commission. This dataset includes, for each yellow-

taxi ride, the total fare, the starting and ending location as well as total time of the ride.

We considered several dates (from January 4 to January 8, 2016). For each of these dates

we looked at the trips that started between 9 am and 5 pm, in order to restrict our attention

to a time horizon with a relatively constant rate of trips per time.

Moreover, in order to better conform to part (ii) of Assumption 1.1, we took two dif-

ferent approaches. First, we filtered the trips that started and ended in a limited region

of Manhattan (we took Midtown, Upper West Side and Upper East Side). By consider-

ing this small geographical region, we limit the effect of spacial considerations, and better

conform to part (ii) of Assumption 1.1, that any feasible set of jobs could be performed by

any provider. For our second approach, although we did not limit the starting and ending

region, we added geographical constraints to our allocations that we describe below. By

adding these spacial considerations we ensure that each set of feasible trips is geographically

consistent, while at the same time we satisfy part (ii) of Assumption 1.1 by allowing any

provider to perform any set of feasible trips.

In Figure A.2 we can see the empirical distribution of the total trip duration and total

fare payed, for Midtown Manhattan, on January 8, 2016. In particular, for this specific

date we can see that the mean in total duration for this region is of 7.41, while the variance

is 13.48. At the same time the mean of the total fares is $8.68, and the variance is $5.63.

Finally, we also cleaned the data by removing the trips in the top 0.1% of both total time

elapsed and total fare, thus removing several outliers that were clearly due to corrupted
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data (trips of almost 24 hours or more than $1000).
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Figure A.2: (left) Empirical distribution of the duration of trips. (right) Empirical distribution
of the total fare of trips.

In order to compute the average relative loss when considering only Max-Min fair so-

lutions, we generated demand instances using this data. We partitioned the time horizon

into intervals of w minutes, and from each of these intervals we sampled 30 trips uniformly

at random. We considered different values of w, from 10 to 20 minutes. We defined feasible

allocations in two ways. For our first approach we only required that trips that intersected

in time were not allocated to the same provider. For our second approach, we added the

restriction that two trips can only be allocated together if, driving at an average speed of v

mph, a driver can reach the start-point of one trip from the end-point of the other trip. We

considered speeds of v in the range {7.44mph, 10.7mph}, which were the mean and median

speeds across the whole city in 2016 (see New York City Department of Transportation

2018). Then, we solved for both the total value-maximizing solution and for the value-

maximizing solution among the Max-Min fair solutions, for a varying number of providers.

For this, we used a Integer Programming formulation of the allocation problems. In order

to obtain the Max-Min fair allocations, we first solved for the Max-Min objective and then

constrained the allocations to ensure that all providers received at least that amount of total

fare. We limited ourselves to 30 jobs, because of computational considerations (solving for
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the Max-Min solution is NP-hard in general). Once we obtained the two value-maximizing

solutions, we computed the total relative loss across the whole time horizon by taking the

relative difference of total value with and without the Max-Min fair restriction. We sampled

the instances 100 times, and computed for each number of providers the average value loss

across these 100 samples.

In Figures A.3-A.4 we can see the relative value loss as a function of the number of

providers, without any geographical restrictions, for different combinations of dates, regions,

and size of interval, w. In Figure A.5 we can see the relative value loss as a function of

the number of providers, under the feasibility constraints mentioned above, for the whole

city of New York, for different average speeds v. We show here a representative set of our

results, the complete set of results is available upon request.

We can see in Figure A.3 that there does not seem to be much difference from region to

region. We observed similar results across the three regions for all the combinations of dates

and values of w we tested. In Figure A.4 we see that for the same region but different dates

the relative losses do not appear to change much. Nevertheless, by comparing Figure A.3

to Figure A.4 we observe that the losses do seem to increase when w is decreased. This is

consistent with the fact that we are taking the same number of jobs in both, resulting in a

higher density of trips per time when we decrease w.

In both Figures A.4 and A.3 we observed the same pattern mentioned in §1.5 regarding

the effect of the providers to job ratio on the loss, namely, for extreme values of this ratio

the loss collapses to zero, and the loss achieves its maximum value at an intermediate value.

Moreover, for every day and region we analyzed we observe that the curves of maximum

losses and average losses are relatively close together, implying that the low average losses

are due to frequent low losses, as opposed to infrequent high losses.

In Figures A.5 we can see that adding a geographic feasibility constraint does not seem

to change significantly the average losses. Furthermore, changing the average speed from the

mean bus speed in the city to the median bus speed does not result in any apparent change

in the average losses. It is worth noting that increasing the speed v did lead eventually to
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almost the same results seen in Figure A.4, while reducing v to zero lead to a constant zero

loss.
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Figure A.3: Relative value loss for different regions. Average and maximum Lγ(F,FG) as
a function of the number of providers, for instances with 30 jobs constructed from the data, using
w = 20 and three different regions of NYC.
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Figure A.4: Relative value loss for different dates. Average and maximum Lγ(F,FG) as a
function of the number of providers, for instances with 30 jobs constructed from the data, using
w = 15 and three different dates of the first week of 2016.

As a robustness test of how our results would change when Assumption 1.1(ii) is re-

laxed, we also computed the average loss in instances that violate the symmetry assump-

tion. Namely, we parametrized the symmetry of each instance by s: in an instance with

symmetry s%, each provider can only perform s% of all the jobs. To construct instances

with s% symmetry, we took the same set of jobs we considered in our first approach de-

fined above and randomly (and independently) selected the set of jobs each provider can

perform. Hence, at 100% symmetry, our instances satisfy Assumption 1.1(ii) and are the
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Figure A.5: Relative value loss with geographic constraints for different average speed,

v. Average and maximum Lγ(F,FG) as a function of the number of providers, for instances with 30

jobs constructed from the data with geographic constraints on the feasible allocations, using w = 15

and the two values of v: v = 7.44 (left) and v = 10.44 (right)).

same as those analyzed above. In Figure A.6 we can see the average relative loss as a

function of the number of providers, for different values of s (with w = 15, the region as

Midtown Manhattan, and no geographical restrictions). The results suggest that for “high

symmetry” (i.e., values of s above 60), the resulting average losses are not significantly

different from those under full symmetry, recorded in Figures A.3-A.4; but once instances

become “sufficiently asymmetric” (the symmetry parameter drops below 50), the average

losses decrease. Intuitively, lower values of s imply lower probabilities of two providers being

able to perform the same job, which may explain why for low number of providers and low

values of s the loss is always zero: if no job can be performed by two providers, then the

allocation problems can be separated into disjoint problems for each provider, which, by

Proposition 1.5 implies that the value loss will be zero. This shows that asymmetry can

play a nuanced role, depending on other problem parameters: some asymmetry actually

reduced the average losses here, but complete asymmetry also lead to worst-case losses that

asymptotically approached 100%, as seen in Instance A.4.

Synthetically generated Instances. In order to analyze the dependency between

the variation of values and the relative value loss we mention in §1.4, we generate synthetic

instances where we can control this variation. In particular, for each instance we sample
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uniformly 30 starting points in the interval (0, x] ⊆ R, for different x in the interval (1, 3),

and for each point we sample from a truncated normal distribution the length of the interval.

We take this truncated normal distribution with mean 1 and a coefficient of variation cv

varying from 0.001 to 0.5. Each interval represents a specific job (similarly to the trips

in the TLC data). We consider the value of the each job to be exactly the length of the

interval. As was the case with the trips, we will assume that two jobs cannot be allocated

together if their intervals overlap. Therefore, we can measure the average loss for different

values of the coefficient of variation of the intervals lengths. We take the average loss over

100 samples for each coefficient of variation. The results for a representative subset of values

of x can be seen in Figure A.7. We observe that the main characteristics of the relative

loss as a function of the ratio of providers to jobs is maintained for different values of x,

with the difference that for lower x we observe higher maximum values of relative loss. As

occurred with the instances generated with the TLC data when lowering w, this may be

due to the fact that we take instances of 30 jobs for all the values of x, which implies that

the probability that two jobs are incompatible is lower for larger x.

We can see in Figure A.7, as we mentioned in §1.5, that the maximum loss in decreasing

in the coefficient of variation of the values, consistent with the remarks of §1.4 on the

variation of values as a driver of loss. Nevertheless, in the instances we generated for

Figure A.7, the variation of the values is intrinsically connected to the variation in the

lengths of the intervals we took to generate the feasibility restrictions. Hence, in order

to isolate the effect of the variation of values, we took the same instances, but where

we fixed the length of each interval (representing a job) to be exactly 1, for feasibility

purposes. Therefore, while the intervals that define the feasibility constraints all have length

1, the values remain as before, taken from truncated normal distributions with different

coefficients of variation. We then plotted the average losses as before in Figure A.8. By

comparing Figure A.7 and A.8, we can see that the effect of the variation in values on the

loss remains, although we do observe slightly higher losses, in particular for the cases with

large coefficients of variation.
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As a second robustness test on this effect we computed the loss for each instance when

we completely remove the variation in values. For this, we simply take all instances we

generated (both from the data and the synthetically generated) and we fix all values to be

1. The resulting losses, under Max-Min fair guarantees, are always zero, for all instances.

This once again affirms the importance of the variation in values as a main driver of loss in

these instances, so much so that when we remove it the losses disappear.

This numerical analysis shows that the average loss may be small in particular instances

that are included in our general theoretical analysis. Moreover it demonstrates the effect of

many of the main drivers of loss we analyzed in §1.4.
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Figure A.6: Relative value loss for different values of the symmetry parameter, s. Average

and maximum Lγ(F,FG) as a function of the number of providers, for instances with 30 jobs

constructed from the data with varying levels of symmetry s, using w = 15 and the four values of s:

s = 20% (upper left), s = 40% (upper right), s = 60% (lower left), s = 80% (lower right).
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Figure A.7: Synthetic instances for x varying from 1.3 to 1.8.
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Figure A.8: Synthetic instances with fixed interval length for x varying from 1.3 to 1.8.
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Appendices to Chapter 2

B.1 Proofs

We begin by proving a proof of Theorem 2.1.

Proof of Theorem 2.1. Recall that the problem is divided into N +1 periods of length τ ,

where the n-th period corresponds to the time [(n−1)τ, nτ). In the terminal period, N +1,

the farmer consumes the remaining cash position net of interest payments. In the rest of

the periods, the farmer observes the price pn, total productive land `n, and current cash

position xn, and decides on the consumption rate cn, the production-expenditure rate yn,

and the total deforestation amount `dn. Let Jn(xn, `n, pn) denote the farmer’s value function

at time n ∈ {1, . . . , N + 1}. We show the following Proposition that proves the desired

result:

81



www.manaraa.com

APPENDIX B. APPENDICES TO CHAPTER 2 82

Proposition B.1 For n ∈ {1, . . . , N + 1},

Jn(xn, `n, pn) =
β̂

τ
(xn + (1− e−αxn) + fn(pn, `n)), (B.1)

`dfn = (ˆ̀
n+1 − `n)+, where ˆ̀

n+1 solves
e−βτ∂Enfn+1(pn+1, l)

∂l
= d, (B.2)

yn(pn) = y∗(`n, pn), (B.3)

cfn =
1

τ

(
xn + pn(y∗n)λ`nτ − (qy∗n + k(y∗n)λ)`nτ

− (e−ατxn − 1)− (`dn)+d− gn
)
,

(B.4)

where gn = 1
ατ

(
((`n)2(yn)2λα2σ2τ4)/2− log( e

βτ−1
ατ )

)
, β̂ = 1−e−βτ

β , fn(`n, pn) is concave

and increasing in `n and increasing in pn, the expectation En is taken conditional on the

σ-algebra σ({pi}i≤n, {Wi}i<n), and y∗(`n, pn) solves:

(y∗)λ−1λ`nτ(pn − k)− (y∗)2λ−1λ`2nτ
3σ2α(1− e−βτ ) = q`nτ. (B.5)

Proof of Proposition B.1. We first show that for n = N + 1, equation (B.1) holds.

In this period, the farmer no longer produces, and consumes at a constant rate cN+1 =

(xN+1 − (e−ατxN+1 − 1))/τ , that leads to a value function that can be written as:

JN+1(xN+1, `N+1, pN+1) =

∫ τ

0

(
xN+1 − (eατxN+1 − 1)

τ

)
e−βsds

=
1− e−βτ

βτ

(
xN+1 − (e−βτxN+1 − 1)

)
,

that is consistent with equation (B.1), taking fN+1(pN+1, `N+1) = 0, which is constant and

thus concave increasing in `N+1 and increasing in pN+1.

We now proceed by induction in n, we assume the induction hypothesis for n+ 1, and

consider the farmer’s decision problem at time n. The farmer’s value to go function at time

n is given by:
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Jn(xn, `n, pn) = max
yn≥0,cn,`dn≥0

{
cn

∫ τ

0
e−βsds+ eβτEn [Jn+1(xn+1, pn+1(Pn+1), `n+1)]

}
= max

yn≥0,cn,`dn≥0

β̂

τ

{
cnτ + e−βτEn

[
xn+1 − (e−αxn+1 − 1) + fn+1(`n+1, pn+1)

]}
Where the second inequality is due to the inductive hypothesis. Now, we will define the

following auxiliary variable:

gn = xn + pny
λ
n`nτ − cnτ − (qyn + kyλn)`nτ − (e−ατxn − 1)− (`dn)+d,

which, using the cash dynamics for the farmer imply that

cn =
1

τ
(xn + pny

λ
n`nτ − gn − (qyn + krn)`nτ − (e−ατxn − 1)− (`dn)+d),

xn+1 = gn − yλn`nτσεn,

with ε ∼ N(0, 1). Using these identities, we can rewrite the value to go function at time n

as

= max
yn≥0,gn,`dn≥0

β̂

τ

{
(xn + pny

λ
n`nτ − gn − (qyn + kyλn)`nτ − (e−ατxn − 1)− (`dn)+d)

+ e−βτEn
[
xn+1 − (e−ατxn+1 − 1) + fn+1(`n + `dn, pn+1)

] }
= max

yn≥0,gn,`dn≥0

β̂

τ

{
(xn + pny

λ
n`nτ − gn − (qyn + kyλn)`nτ − (e−ατxn − 1)− (`dn)+d)

+ e−βτEn
[
gn − yλn`nτσεn − (e−ατ(gn−yλn`nτσεn) − 1) + fn+1(`n + `dn, pn+1)

] }
=
β̂

τ

{
(xn − (e−ατxn − 1) + max

yn≥0,gn,`dn≥0
h(yn, `

d
n, gn)

}



www.manaraa.com

APPENDIX B. APPENDICES TO CHAPTER 2 84

Where

h(yn, `
d
n, gn) = yλn`nτpn − gn−(qyn + kyλn)`nτ − (`dn)+d

+ e−βτEn
[
gn − (e−ατ(gn−yλn`nτσεn) − 1) + fn+1(`n + `dn, pn+1)

]
.

= yλn`nτpn − gn−(qyn + kyλn)`nτ − (`dn)+d

+ e−βτ (gn − (e−ατgn+(αyλn`nτ
2σ)2/2 − 1) + Enfn+1(`n + `dn, pn+1)).

This last equality follows from taking the Gaussian Moment Generating Function (recall

that ε ∼ N(0, 1)):

En
[
(e−ατ(gn−rn`nτσεn)

]
= e−ατgn+(αyλn`nτ

2σ)2/2

We can separate h(yn, `
d
n, gn) into two functions,

h(yn, `
d
n, gn, `n, pn) = h1(yn, gn, `n, pn) + h2(`dn, `n, pn),

where

h1(yn, gn, `n, pn) = `nτ(yλn(pn − k)− ynq)− (1− e−βτ )gn − e−βτ (e−ατgn+(αyλn`nτ
2σ)2/2 − 1),

h2(`dn, `n, pn) = Enfn+1(`n + `dn, pn+1)− (`dn)+d.

By inductive hypothesis, we know that fn+1(`, pn+1) is concave and increasing in it’s first

argument, which implies that h2(`dn) is concave in `dn. Hence, we can take the first order

conditions to maximize h2(`dn):

∂h2(`d∗n , `n, pn)

∂`dn
= 0⇔ e−βτ∂Enfn+1(`n + `d∗n , pn+1)

∂`dn
= 1{`d∗n ≥0}d. (B.6)

From equation (B.6) we conclude that the optimal `dn must satisfy `dn = (ˆ̀
n+1− `n)+, where

ˆ̀
n+1 solves e−βτ∂Enfn+1(`,pn+1)

∂` = d. This proves equation (B.2).
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In order to optimize h2(yn, gn, `n, gn), we will begin by finding g∗n(yn). Notice that

h2(yn, gn) is concave in gn, because it is an affine function of gn minus a convex function of

gn. Hence, we can take the first order conditions on h1(yn, gn, `n, gn), with respect to gn,

to obtain:

∂h1(yn, g
∗
n, `n, pn)

∂gn
= 0⇔ exp(−ατg∗n + (αyλn`nτ

2σ)2/2) =
eβτ

τα
. (B.7)

By using equation (B.7), we obtain g∗n = 1
ατ

(
(`2ny

2λ
n α

2σ2τ4)/2− log( e
βτ−1
ατ )

)
, proving (B.4).

Now, we can write h3(yn, `n, pn) = maxgn h
1(yn, g

∗
n(yn), `n, pn), as:

h3(yn, `n, pn) = `nτ(yλn(pn − k)− ynq)− (1− e−βτ )(
1

ατ

(
(`2ny

2λ
n α

2σ2τ4)/2− log(
eβτ − 1

ατ
)

)
)

− e−βτ (e−ατg
∗
n+(αyλn`nτ

2σ)2/2 − 1)

(B.8)

= `nτ(yλn(pn − k)− ynq)− (1− e−βτ )

(
(`2ny

2λ
n ασ

2τ3)/2− 1

ατ
log(

eβτ − 1

ατ
)

)
− e−βτ

(
eβτ − 1

τα
− 1

)
.

Where the second equality uses the characterization in (B.7).

In order to maximize h3(yn, `n, pn), we begin by taking the first order conditions to find

the stationary point y∗n:

∂h3(y∗n, `n, pn)

∂yn
= 0⇔ (y∗)λ−1λ`nτ(pn − k)− (y∗)2λ−1λ`2nτ

3σ2α(1− e−βτ ) = q`nτ. (B.9)

In order to show that y∗ is indeed a maximum of h3(yn, `n, pn), we show in Proposi-

tion B.2 that ∂2h3(y∗n(`n,pn),`n,pn)
∂y2
n

≤ 0, for all `n and pn, which proves (B.5), and gives an

implicit characterization of the optimal production-expenditure y∗n(`n, pn).
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Putting together the results shown above, we can write

Jn(xn, `n, pn) =
β̂

τ

{
(xn − (e−ατxn − 1) + h3(y∗n(`n, pn), `n, pn) + h2(`d∗n (`n, pn), `n, pn)

}
(B.10)

=
β̂

τ

{
(xn − (e−ατxn − 1) + fn(`n, pn)

}
, (B.11)

where fn(`n, pn) = h3(y∗n(`n, pn), `n, pn) + h2(`d∗n (`n, pn), `n, pn). Therefore, to conclude the

proof of the proposition, we need only to show that fn(`n, pn) is concave and increasing in

`n, and increasing in pn. To show this, we begin by observing that

h2(`d∗n (`n, pn), `n, pn) = max
`dn

[Enfn+1(`n + `dn, pn+1)− (`dn)+d],

Where, by inductive hypothesis, h2(`dn, `n, pn) = Enfn+1(`n + `dn, pn+1) − (`dn)+d is jointly

concave in both `n and `dn. Thus, because partial maximization of a jointly concave function

preserves concavity, h2(`d∗n (`n, pn), `n, pn) must be concave in `n. To show that it is increas-

ing in `n, we observe that max{`n, ˆ̀
n+1} is increasing in `n, and (ˆ̀

n+1−`n)+ is decreasing in

`n, this together with the inductive hypothesis gives us the results for h2(`d∗n (`n, pn), `n, pn).

That it is increasing in pn is a consequence of the inductive hypothesis and the fact that

E(pn+1|σ({pi}i≤n)) is increasing in pn.

Finally, we need only to prove that h3(y∗n(`n, pn), `n, pn) is concave increasing in `n and

increasing in pn. We proceed by considering the first and second derivative of h3(y∗n(`n, pn), `n, pn)

with respect to `n, and the first derivative with respect to pn.
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dh3(y∗n(`n, pn), `n, pn)

d`n
=
∂h3(y∗n(`n, pn), `n, pn)

∂y︸ ︷︷ ︸
0, by definition of y∗

dy∗n(`n, pn)

d`n
+
∂h3(y∗n(`n, pn), `n, pn)

∂`n

= τ((y∗n)λ(pn − k)− y∗nq)− (1− e−βτ )(`n(y∗n)2λασ2τ3)

=
y∗n
λ`n

[
τ`n((y∗n)λ−1λ(pn − k)− λq)− (1− e−βτ )λ(`2n(y∗n)2λ−1ασ2τ3)

]
=

y∗n
λ`n

[
τ`n(y∗n)λ−1λ(pn − k)− (1− e−βτ )λ(`2n(y∗n)2λ−1ασ2τ3)− λq`nτ

]
=
y∗nq`nτ(1− λ)

λ`n

=
y∗nqτ(1− λ)

λ
≥ 0.

The fourth equality above uses the implicit definition of y∗ (B.9).

dh3(y∗n(`n, pn), `n, pn)

dpn
=
∂h3(y∗n(`n, pn), `n, pn)

∂y︸ ︷︷ ︸
0, by definition of y∗

dy∗n(`n, pn)

dpn
+
∂h3(y∗n(`n, pn), `n, pn)

∂pn

= τ`n(y∗n)λ ≥ 0.

This proves that h3(y∗n(`n, pn), `n, pn) is indeed increasing in `n and pn. Moreover, we see

that d2h3(y∗n(`n,pn),`n,pn)
d`2n

≤ 0 if and only if dy∗(`n,pn)
d`n

≤ 0, which we prove in Proposition B.3.

Therefore, fn(`n, pn) is both increasing in `n and concave in `n, which completes the proof

of the inductive step. �

Proposition B.2 Let h3(yn, `n, pn) be as defined in equation (B.8), and y∗(`n, pn) be the

optimal production-expenditure level as defined by (B.9), then ∂2h3(y∗n,`n,pn)
∂y2 ≤ 0, for any

`n ≥ 0 and pn.
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Proof. First, let us compute the first derivative ∂h3(y∗n,`n,pn)
∂y :

∂h3(y, `n, pn)

∂y
= yλ−1λ`nτ(pn − k)− y2λ−1λ`2nτ

3σ2α(1− e−βτ )− q`nτ.

From here, we can compute the desired second derivative:

∂2h3(y∗n, `n, pn)

∂y2
= (y∗)λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗)2λ−2λ`2nτ

3σ2α(1− e−βτ )

=
1

y∗n
[(y∗)λ−1(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗)2λ−1λ`2nτ

3σ2α(1− e−βτ )]

=
1

y∗n
[(λ− 1)q`nτ − (y∗)2λ−1λ2`2nτ

3σ2α(1− e−βτ )] ≤ 0.

Where the first equality uses the fact that y∗ = 0 is not a solution to equation (B.9), as long

as q > 0 (and if q = 0, we consider the unique positive solution defined by
(

(pn−k)
`nτ2α(1−e−βτ )

) 1
λ

).

Additionally, the second equality uses the definition of y∗, that implies that (y∗)λ−1(λ −

1)λ`nτ(pn − k) = (λ− 1)[y2λ−1λ`2nτ
3σ2α(1− e−βτ ) + q`nτ ]. And finally, the last inequality

stems from the simple observation that λ ≤ 1. �

Proposition B.3 Let y∗n(`n, pn) be the optimal production-expenditure level, as defined by

(B.9), then y∗n(`n, pn) is decreasing in `n, i.e., dy∗(`n,pn)
d`n

≤ 0.

Proof.

We compute the derivative of y∗n(`n, pn) with respect to `n, by using the Implicit Function

Theorem and the definition of y∗ in (B.9).

dy∗(`n, pn)

d`n
= −

∂2h3(y∗,`n,pn)
∂y∂`n

∂2h3(y∗,`n,pn)
∂y2

= −(y∗)λ−1λτ(pn − k)− (y∗)2λ−1λ2`nτ
3σ2α(1− e−βτ )− qτ

∂2h3(y∗,`n,pn)
∂y2
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But, by Proposition B.2, we know that ∂2h3(y∗,`n,pn)
∂y2 ≤ 0, this implies that:

sign(
dy∗(`n, pn)

d`n
) = sign((y∗)λ−1λτ(pn − k)− (y∗)2λ−1λ2`nτ

3σ2α(1− e−βτ )− qτ)

= sign(
1

`n
[(y∗)λ−1λ`nτ(pn − k)− 2(y∗)2λ−1λ`2nτ

3σ2α(1− e−βτ ) − `nqτ)]

= sign(−(y∗)2λ−1λ`nτ
3σ2α(1− e−βτ )) by (B.9)

Which implies that dy∗(`n,pn)
d`n

≤ 0, proving the result. �

These propositions together finish the proof of Theorem 2.1. �

We proceed to prove Theorem 2.2.

Proof of Theorem 2.2.

As a consequence of the characterization proven in Theorem 2.1, and fn(`n, pn) being

increasing in `n and pn for every n ∈ {1, . . . , N + 1}, we have that Jn(xn, `n, pn) must

be increasing in `n and pn. Moreover, due to this same characterizations, Jn(xn, `n, pn) is

increasing in xn if and only if xn + (1 − e−αxn) is increasing in xn, which can be seen by

simple inspection. We need then only to prove that the value function is decreasing in q, k,

and σ2. We proceed to show by backwards induction in n that

∂Jn(xn, `n, pn)

∂k
≤ 0,

∂Jn(xn, `n, pn)

∂q
≤ 0,

∂Jn(xn, `n, pn)

∂σ2
≤ 0.

When n = N + 1, then JN+1(xn, `n, pn) = 1−e−βτ
βτ

(
xN+1 − (e−βτxN+1 − 1)

)
, which im-

plies that
∂JN+1(xN+1,`N+1,pN+1)

∂k =
∂JN+1(xN+1,`N+1,pN+1)

∂α =
∂JN+1(xN+1,`N+1,pN+1)

∂σ2 = 0.

Now we proceed by assuming that the result holds for n+ 1, and proving that it must

hold for n. Using the characterization shown in (B.10) in the proof of Proposition B.1, we
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can write the value function at time n as:

Jn(xn, `n, pn) =
β̂

τ

{
(xn − (e−ατxn − 1) + h3(y∗n(`n, pn), `n, pn) + max

`dn≥0
h2(`dn, `n, pn)

}
,

where

h3(y∗n(`n, pn), `n, pn) = `nτ(y∗n)λ(pn − k)− y∗nq)− (1− e−βτ )(`2n(y∗n)2λασ2τ3)/2

− 1

ατ
log(

eβτ − 1

ατ
)− e−βτ (

eβτ

τα
− 1),

h2(`dn, `n, pn) = Enfn+1(`n + `dn, pn+1)− (`dn)+d.

Hence, if we wish to take the derivative of the value function with respect to the pa-

rameters k, q, and σ2, we need only consider the derivatives of h3(y∗n(`n, pn), `n, pn), and

max`dn≥0 h
2(`dn, `n, pn). Let us begin by considering the latter:

∂max`dn≥0 h
2(`dn, `n, pn)

∂k
=
∂max`+nd≥0 Enfn+1(`n + `dn, pn+1)− (`dn)+d

∂k

=
∂Enfn+1(`n + `dn, pn+1)− (`dn)+d

∂k
(`d∗n , `n, pn)

Using
Envelope
Theorem.

= En
∂fn+1(`n + `dn, pn+1)

∂k
(`d∗n , `n, pn) ≤ 0.

Where the second equality is an application of the Envelope Theorem (see Milgrom and Segal

2002), and the final inequality comes from the inductive hypothesis. The same arguments

prove that max`dn≥0 h
2(`dn, `n, pn) must be decreasing in q and σ2. It only remains to be seen

that the same is true for h3(y∗n(`n, pn), `n, pn).
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dh3(y∗n(`n, pn), `n, pn)

dk
=
∂h3(y∗n(`n, pn), `n, pn)

∂y︸ ︷︷ ︸
0, by definition of y∗

dy∗n(`n, pn)

dk
+
∂h3(y∗n(`n, pn), `n, pn)

∂k
,

= −`nτ(y∗n)λ ≤ 0,

dh3(y∗n(`n, pn), `n, pn)

dq
=
∂h3(y∗n(`n, pn), `n, pn)

∂y︸ ︷︷ ︸
0, by definition of y∗

dy∗n(`n, pn)

dq
+
∂h3(y∗n(`n, pn), `n, pn)

∂q
,

= −`nτ(y∗n) ≤ 0,

dh3(y∗n(`n, pn), `n, pn)

dσ2
=
∂h3(y∗n(`n, pn), `n, pn)

∂y︸ ︷︷ ︸
0, by definition of y∗

dy∗n(`n, pn)

dσ2
+
∂h3(y∗n(`n, pn), `n, pn)

∂σ2
,

= −1

2
`2nτ

3α(1− e−βτ )(y∗n)2λ ≤ 0.

Where all the inequality above are readily apparent. This shows that the derivative of the

value function with respect to k, σ2, and q must be negative for n, and thus concludes the

inductive proof. �

Now we will prove Theorem 2.3, by using the same logic as in Proposition B.3.

Proof of Theorem 2.3. We wish to see that the optimal production-expenditure rate

y∗n(`n, pn) as defined by (B.9), is decreasing in `n, q, k, α, and σ2. First, notice that

Proposition B.3 proves already the first result. Following the same reasoning, we will

compute
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dy∗(`n, pn)

dq
= −

∂2h3(y∗,`n,pn)
∂y∂q

∂2h3(y∗,`n,pn)
∂y2

= − −`nτ
∂2h3(y∗,`n,pn)

∂y2

=
`nτ

∂2h3(y∗,`n,pn)
∂y2

≤ 0.

Where, the numerator is always positive and the denominator was proven to be neg-

ative in Proposition B.2. We similarly compute the derivative of the optimal production-

expenditure rate with respect to interest rate α and expected production cost k:

dy∗(`n, pn)

dα
= −

∂2h3(y∗,`n,pn)
∂y∂α

∂2h3(y∗,`n,pn)
∂y2

= −−`
2
nτ

3σ2λ(1− e−βτ )(y∗n)2λ−1

∂2h3(y∗,`n,pn)
∂y2

=
`2nτ

3σ2λ(1− e−βτ )(y∗n)2λ−1

∂2h3(y∗,`n,pn)
∂y2

≤ 0.
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dy∗(`n, pn)

dk
= −

∂2h3(y∗,`n,pn)
∂y∂k

∂2h3(y∗,`n,pn)
∂y2

= −−`nτλ(y∗n)λ−1

∂2h3(y∗,`n,pn)
∂y2

=
`2nτ

3σ2λ(1− e−βτ )(y∗n)2λ−1

∂2h3(y∗,`n,pn)
∂y2

≤ 0.

And, as before, we see that the numerator is always positive while the denominator is

always negative. Finally, we compute the derivative with respect to σ2:

dy∗(`n, pn)

dσ2
= −

∂2h3(y∗,`n,pn)
∂y∂σ2

∂2h3(y∗,`n,pn)
∂y2

= −−(y∗)2λ−1λ`2nτ
3α(1− e−βτ )

∂2h3(y∗,`n,pn)
∂y2

=
(y∗)2λ−1λ`2nτ

3α(1− e−βτ )
∂2h3(y∗,`n,pn)

∂y2

≤ 0.

Where, as before, the numerator is always positive and the denominator is always negative.

This proves that the optimal production-expenditure rate is decreasing in `n, q, and σ2.

�

We will now state and prove modularity results on Jn(xn, `n, pn) that will allow us to

prove Theorem 2.4.

Proposition B.4 The value function Jn(xn, `n, pn) is sub-modular in (`n, α), (`n, k), and

(`n, σ
2), for every n ∈ {1, . . . , N + 1}.



www.manaraa.com

APPENDIX B. APPENDICES TO CHAPTER 2 94

Proof. We will proceed to show by backwards induction in n that

∂2Jn(xn, `n, pn)

∂`n∂k
≤ 0,

∂2Jn(xn, `n, pn)

∂`n∂α
≤ 0,

∂2Jn(xn, `n, pn)

∂`n∂σ2
≤ 0.

When n = N + 1, then JN+1(xn, `n, pn) = 1−e−βτ
βτ

(
xN+1 − (e−βτxN+1 − 1)

)
, which im-

plies that
∂2JN+1(xN+1,`N+1,pN+1)

∂`N+1∂k
=

∂2JN+1(xN+1,`N+1,pN+1)
∂`N+1∂α

=
∂2JN+1(xN+1,`N+1,pN+1)

∂`N+1∂σ2 = 0.

Now, as in the proof of Theorem 2.2, we proceed with the inductive step assuming the

inductive hypothesis for n + 1 and using the characterization of the value function shown

in (B.10). Following the argument in the proof of Theorem 2.2, it suffices to show that

h3(y∗n(`n, pn), `n, pn) and max`dn≥0 h
2(`dn, `n, pn) are both sub-modular in (`n, α), (`n, k), and

(`n, σ
2). For this, we consider the crossed derivatives and show that they are negative:

∂2 max`dn≥0 h
2(`dn, `n, pn)

∂`n∂k
=
∂2 max`+nd≥0 Enfn+1(`n + `dn, pn+1)− (`dn)+d

∂`n∂k

=
∂2Enfn+1(`n + `dn, pn+1)− (`dn)+d

∂`n∂k
(`d∗n , `n, pn)

Using
Envelope
Theorem.

= En
∂2fn+1(`n + `dn, pn+1)

∂`n∂k
(`d∗n , `n, pn) ≤ 0.

Where the second equality is an application of the Envelope Theorem and the last inequality

is due to the inductive hypothesis. This same argument can be made for (`n, α), and (`n, σ
2).

Thus, we need only to show that the crossed derivatives of h3(y∗n(`n, pn), `n, pn) are negative.

In the proof of Theorem 2.1 we have already shown that

dh3(y∗n(`n, pn), `n, pn)

d`n
=
y∗nqτ(1− λ)

λ
≥ 0.
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This implies that d2h3(y∗n(`n,pn),`n,pn)
d`ndk

≤ 0 if and only if dy∗n(`n,pn)
dk ≤ 0, and equivalently for

α, and σ2. But we have already shown that this is the case in proving Theorem 2.3. Hence,

we have Jn(xn, `n, pn) is sub-modular in (`n, k), (`n, α), and (`n, σ
2), proving the inductive

step and the proposition. �

We now prove Theorem 2.4 using the modularity results from Proposition B.4.

Proof of Theorem 2.4. In Proposition B.1, we prove that `d∗n = (ˆ̀
n+1 − `n)+, where

ˆ̀
n+1 solves e−βτ∂Enfn+1(`,pn+1)

∂` = d. Additionally, in Proposition B.4, we showed that

Jn(xn, `n, pn) is sub-modular in (`n, k), (`n, q), and (`n, σ
2), that by the characterization

proven in Proposition B.1 implies that fn(`n, pn) is as well for every n ∈ {1, . . . , N + 1}.

Therefore, a simple application on Topkis’ theorem (Topkis 1998) shows that ˆ̀
n+1 must

be decreasing in k, α, and σ2 for n ∈ {1, . . . , N}, which implies that `d∗n is decreasing for

n ∈ {1, . . . , N}. Finally, `dN+1 is always zero by definition, which concludes the proof that

`d∗n is decreasing in k, α, and σ2, for n ∈ {1, . . . , N + 1}.

�

In order to prove Theorem 2.5, we proceed to show that the modularity of Jn(xn, `n, pn),

with respect to (`n, q) has the same threshold behavior.

Proposition B.5 There exists positive functions q̃Hn (`n) and q̃Ln (`n) such that the value

function Jn(xn, `n, pn) is super-modular in (`n, q), for q ≤ q̃Ln (`n), and sub-modular in

(`n, q), for q > q̃Hn (`n) for every n ∈ {1, . . . , N + 1}. Moreover, q̃Hn (`n) and q̃Hn (`n) are

increasing in `n, σ2, and α.

Proof. As in the proof of Proposition B.4, we will proceed by backwards induction in n to

show that there exists a q̃(`n) such that

∂2Jn(xn, `n, pn)

∂`n∂q
≥ 0, if q ≤ q̃Ln (`n),

and
∂2Jn(xn, `n, pn)

∂`n∂q
≤ 0, if q ≥ q̃Hn (`n).
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Moreover, q̃Hn (`n) and q̃Ln (`n) are increasing in `n, σ2, and α.

When n = N + 1, JN+1(xn, `n, pn) = 1−e−βτ
βτ

(
xN+1 − (e−βτxN+1 − 1)

)
, which implies

that
∂2JN+1(xN+1,`N+1,pN+1)

∂`n∂q
= 0. We proceed then to the inductive step, where we will

assume the result holds for n+ 1.

Using the characterization shown in (B.10), we can see that it suffices to prove that

h3(y∗n(`n, pn), `n, pn) and max`dn≥0 h
2(`dn, `n, pn) both satisfy the desired property. In par-

ticular,

∂2 max`dn≥0 h
2(`dn, `n, pn)

∂`n∂q
=
∂2 max`+nd≥0 Enfn+1(`n + `dn, pn+1)− (`dn)+d

∂`n∂q

=
∂2Enfn+1(`n + `dn, pn+1)− (`dn)+d

∂`n∂q
(`d∗n , `n, pn)

Using
Envelope
Theorem.

= En
∂2fn+1(`n + `dn, pn+1)

∂`n∂q
(`d∗n , `n, pn).

Which, by the inductive hypothesis implies that
∂2 max

`dn≥0
h2(`dn,`n,pn)

∂`n∂q
≥ 0,

if q ≤ q̃Ln+1(max{`n, ˆ̀
n+1}), and

∂2 max
`dn≥0

h2(`dn,`n,pn)

∂`n∂q
≤ 0, if q ≥ q̃Hn+1(max{`n, ˆ̀

n+1}).

Now we need only to show that the same happens for d2h3(y∗n(`n,pn),`n,pn)
d`ndq

. We have

already shown in the proof of Proposition B.1 that

dh3(y∗n(`n, pn), `n, pn)

d`n
=
y∗nqτ(1− λ)

λ
≥ 0.

Thus, we can compute

dh3(y∗n(`n, pn), `n, pn)

d`ndq

=
τ(1− λ)

λ

(
dny

∗(`n, pn)

dq
q + y∗n(`n, pn)

)
=
τ(1− λ)

λ

(
q`nτ

(y∗n)λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗n)2λ−2λ`2nτ
3σ2α(1− e−βτ )

+ y∗n

)
.

Where the second equality uses the expression for dy∗

dq proven in Theorem 2.3 (combined
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with the explicit form of ∂2h3(y∗n(`n,pn),`n,pn)
∂y2 shown in Proposition B.2).The first fraction is

always positive (when λ ≤ 1), which means we can analyze the sign of the crossed derivative

above by looking at the sign of the expression in the parenthesis.

q`nτ

(y∗n)λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗n)2λ−2λ`2nτ
3σ2α(1− e−βτ )

+ y∗n =

=
q`nτ + y∗n((y∗n)λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗n)2λ−2λ`2nτ

3σ2α(1− e−βτ ))

(y∗n)λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗n)2λ−2λ`2nτ
3σ2α(1− e−βτ )

As proven in Proposition B.2, the denominator will always be negative. This implies that

sign(
dh3(y∗n(`n, pn), `n, pn)

d`ndq
)

= −sign(q`nτ + y∗n((y∗n)λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗n)2λ−2λ`2nτ
3σ2α(1− e−βτ )))

= −sign(q`nτ + ((y∗n)λ−1(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗n)2λ−1λ`2nτ
3σ2α(1− e−βτ )))

= −sign(q`nτ + ((λ− 1)q`nτ − λ2(y∗n)2λ−1`2nτ
3σ2α(1− e−βτ ))) by (B.5)

= −sign(q`nτλ− λ2(y∗n)2λ−1`2nτ
3σ2α(1− e−βτ )))

= −sign(q − λ(y∗n)2λ−1`nτ
2σ2α(1− e−βτ ))

=sign(λ(y∗n)2λ−1`nτ
2σ2α(1− e−βτ )− q)

Consider then the function s(q) = λ(y∗)2λ−1`nτ
2σ2α(1− e−βτ )− q. We show that this

function has exactly one zero, and that it takes positive values for q lower than this zero

and negative values for higher qs. On one hand, s(0) ≥ 0, because y∗ ≥ 0. In fact, it is

easy to see that at q = 0, (B.9) the only non-zero solution is y∗ =
(

(pn−k)
`nτ2α(1−e−βτ )

) 1
λ

. On
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the other hand, we can see that limq→∞ s(q) = −∞. To show this, consider

s(q) = λ(y∗n)2λ−1`nτ
2σ2α(1− e−βτ )− q

=
(y∗n)λ−1

`nτ

(
λ(y∗n)λ`2nτ

3σ2α(1− e−βτ )− q`nτ(y∗)1−λ
)

=
(y∗n)λ−1

`nτ

(
λ(y∗n)λ`2nτ

3σ2α(1− e−βτ )−
(
λ`nτ(pn − k)− λ(y∗n)λ`2nτ

3σ2α(1− e−βτ )
))

by (B.9)

=
(y∗n)λ−1

`nτ︸ ︷︷ ︸
lim
q→∞

(y∗n)λ−1 =∞

(
2λ(y∗n)λ`2nτ

3σ2α(1− e−βτ )− λ`nτ(pn − k)
)

︸ ︷︷ ︸
lim
q→∞

(y∗n)λ = 0

Hence, s(q) can be written as the product of two expressions, one converges to infinity and

the other one to −λ`nτ(pn − k) ≤ 0. We can see that lim
q→∞

(y∗n)λ−1 =∞ by taking the limit

as q grows to infinity of equation (B.9):

∞ = lim
q→∞

q`nτ = lim
q→∞

(y∗n)λ−1
(
λ`nτ(pn − k)− (yλ)λ`2nτ

3σ2(1− e−βτ )
)

Therefore, lim
q→∞

s(q) = −∞. This implies that there must exist at least one point q̂zn that

satisfies

s(q̂zn) = λ(y∗n(q̂zn))2λ−1`nτ
2σ2α(1− e−βτ )− q̂zn = 0. (B.12)

We show this point must be unique, by showing that at every such point s′(q̂zn) ≤ 0.

ds(q̂zn)

dq
= λ(2λ− 1)(y∗n(q̂zn))2λ−2dy

∗
n(q̂zn)(`n, pn)

dq
`nτ

2σ2α(1− e−βτ )− 1

=
λ(2λ− 1)(y∗n(q̂zn))2λ−2`2nτ

3σ2α(1− e−βτ )

(y∗n(q̂zn))λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗n(q̂zn))2λ−2λ`2nτ
3σ2α(1− e−βτ )

− 1

=
(y∗n(q̂zn))λ−2(1− λ)λ`nτ(pn − k) + 2(2λ− 1)λ(y∗n(q̂zn))2λ−2`2nτ

3σ2α(1− e−βτ )

(y∗n(q̂zn))λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗n(q̂zn))2λ−2λ`2nτ
3σ2α(1− e−βτ )

We know by Proposition B.2 that the denominator will always be negative, hence, we have



www.manaraa.com

APPENDIX B. APPENDICES TO CHAPTER 2 99

that:

sign
(ds(q̂zn)

dq

)
= −sign

(
(y∗n(q̂zn))λ−2(1− λ)λ`nτ(pn − k) + 2(2λ− 1)λ(y∗n(q̂zn))2λ−2`2nτ

3σ2α(1− e−βτ )
)

= −sign
(

(y∗n(q̂zn))−1[(y∗n(q̂zn))λ−1(1− λ)λ`nτ(pn − k)

+ 2(2λ− 1)λ(y∗n(q̂zn))2λ−1`2nτ
3σ2α(1− e−βτ )]

)
= −sign

(
(y∗n(q̂zn))λ−1(1− λ)λ`nτ(pn − k) + 2(2λ− 1)λ(y∗n(q̂zn))2λ−1`2nτ

3σ2α(1− e−βτ )
)

= −sign
(

(1− λ)[q̂zn`nτ + λ(y∗n(q̂zn))2λ−1`2nτ
3σ2α(1− e−βτ )]

+ 2(2λ− 1)λ(y∗n(q̂zn))2λ−1`2nτ
3σ2α(1− e−βτ )

)
= −sign

(
(1− λ)q̂zn`nτ + (3λ− 1)λ(y∗n(q̂zn))2λ−1`2nτ

3σ2α(1− e−βτ )
)

= −sign
(

(1− λ)λ(y∗n(q̂zn))2λ−1`2nτ
3σ2α(1− e−βτ ) + (3λ− 1)λ(y∗n(q̂zn))2λ−1`2nτ

3σ2α(1− e−βτ )
)

by (B.12)

= −sign
(

2λ2(y∗n(q̂zn))2λ−1`2nτ
3σ2α(1− e−βτ )

)
And because this last expression is always positive, we have that s′(q̂zn) ≤ 0, that implies

that there can only be one such zero.

We have shown that dh3(y∗n(`n,pn),`n,pn)
d`ndq

is positive when q ≤ q̂zn, and negative when

q ≥ q̂zn. Therefore, taking

q̃Hn (`n) = max{q̃Hn+1(max{`n, ˆ̀
n+1}), q̂zn}, (B.13)

q̃Ln (`n) = min{q̃Ln+1(max{`n, ˆ̀
n+1}), q̂zn}, (B.14)

satisfies the conditions, because if q ≤ q̃Ln (`n), both dh3(y∗n(`n,pn),`n,pn)
d`ndq

and
∂2 max

`dn≥0
h2(`dn,`n,pn)

∂`n∂q

are positive, and if q ≥ q̃Hn (`n), they are both negative.

Finally, because we assumed by the induction hypothesis that tildeqHn+1(`n) and q̃Ln+1(`n)

are increasing in `n, α, and σ2, we need only to check that q̂zn is increasing in these three
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parameters to complete the induction. Thus, we take the derivatives of this expression using

the implicit function theorem:

dq̂zn
d`n

= −
ds(q̂zn)
d`n
ds(q̂zn)
dq

.

We showed above that ds(q̂zn)
dq ≤ 0, which means that sign(dq̂

z
n

d`n
) = sign(ds(q̂

z
n)

d`n
), but

ds(q)

d`n
= τ2σ2α(1− e−βτ )

d(y∗)2λ−1`n
d`n

= τ2σ2α(1− e−βτ )

(
`n(2λ− 1)(y∗)2λ−2dy

∗

d`n
+ (y∗)2λ−1

)
.

Which implies that

sign(
dq̂zn
d`n

)

= sign(
ds(q)

d`n
)

= sign(`n(2λ− 1)(y∗)2λ−2dy
∗

d`n
+ (y∗)2λ−1)

= sign(`n(2λ− 1)
dy∗

d`n
+ y∗) ((y∗)2λ−2 ≥ 0)

= sign(
`n(2λ− 1)(y∗)2λ−1λ`nτ

3σ2α(1− e−βτ )

[(y∗)λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗)2λ−2λ`2nτ
3σ2α(1− e−βτ )]

+ y∗) by Prop. B.3

= sign(
(y∗)λ−1(λ− 1)λ`nτ(pn − k)

[(y∗)λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗)2λ−2λ`2nτ
3σ2α(1− e−βτ )]

).

The final expression is always positive, because the denominator is exactly ∂2h3(y∗n(`n,pn),`n,pn)
∂y2 ,

which we proved in Proposition B.2 to be negative, and the numerator is always negative

when λ ≤ 1.
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Similarly, we can compute:

sign(
dq̂zn
d`n

)

= sign(
ds(q)

dα
)

= sign(α(2λ− 1)(y∗)2λ−2dy
∗

dα
+ (y∗)2λ−1)

= sign(α(2λ− 1)
dy∗

dα
+ y∗) ((y∗)2λ−2 ≥ 0)

= sign(
α(2λ− 1)(y∗)2λ−1λ`2nτ

3σ2(1− e−βτ )

[(y∗)λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗)2λ−2λ`2nτ
3σ2α(1− e−βτ )]

+ y∗) by Theo. 2.3

= sign(
(y∗)λ−1(λ− 1)λ`nτ(pn − k)

[(y∗)λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗)2λ−2λ`2nτ
3σ2α(1− e−βτ )]

),

and

sign(
dq̂zn
d`n

)

= sign(
ds(q)

dσ2
)

= sign(σ2(2λ− 1)(y∗)2λ−2 dy
∗

dσ2
+ (y∗)2λ−1)

= sign(σ2(2λ− 1)
dy∗

dσ2
+ y∗) ((y∗)2λ−2 ≥ 0)

= sign(
σ2(2λ− 1)(y∗)2λ−1λ`2nτ

3α(1− e−βτ )

[(y∗)λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗)2λ−2λ`2nτ
3σ2α(1− e−βτ )]

+ y∗) by Theo. 2.3

= sign(
(y∗)λ−1(λ− 1)λ`nτ(pn − k)

[(y∗)λ−2(λ− 1)λ`nτ(pn − k)− (2λ− 1)(y∗)2λ−2λ`2nτ
3σ2α(1− e−βτ )]

).

Where in both cases we obtain the same expression as before, which is always positive.

This proves that the thresholds are always increasing in `n, α, and σ2, and concludes the

inductive proof of the proposition. �

Proof of Theorem 2.5 Using the same arguments as in the proof of Theorem 2.4, and

the modularity results proven in Proposition B.5, we obtain the proof of this Theorem. �
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